
Theory of Computer Science
E3. Proving NP-Completeness

Gabriele Röger

University of Basel

May 6, 2019

Overview Cook-Levin Theorem 3SAT Summary

Course Overview

Theory

Background

Logic

Automata Theory

Turing Computability

Complexity

Nondeterminism

P, NP

Polynomial Reductions

Cook-Levin Theorem

NP-complete ProblemsMore Computability

Overview Cook-Levin Theorem 3SAT Summary

Overview

Overview Cook-Levin Theorem 3SAT Summary

Proving NP-Completeness by Reduction

Suppose we know one NP-complete problem
(we will use satisfiability of propositional logic formulas).

With its help, we can then prove quite easily
that further problems are NP-complete.

Theorem (Proving NP-Completeness by Reduction)

Let A and B be problems such that:

A is NP-hard, and

A ≤p B.

Then B is also NP-hard.
If furthermore B ∈ NP, then B is NP-complete.

Overview Cook-Levin Theorem 3SAT Summary

Proving NP-Completeness by Reduction

Suppose we know one NP-complete problem
(we will use satisfiability of propositional logic formulas).

With its help, we can then prove quite easily
that further problems are NP-complete.

Theorem (Proving NP-Completeness by Reduction)

Let A and B be problems such that:

A is NP-hard, and

A ≤p B.

Then B is also NP-hard.
If furthermore B ∈ NP, then B is NP-complete.

Overview Cook-Levin Theorem 3SAT Summary

Proving NP-Completeness by Reduction: Proof

Proof.

First part: We must show X ≤p B for all X ∈ NP.

From X ≤p A (because A is NP-hard) and A ≤p B
(by prerequisite), this follows due to the transitivity of ≤p.

Second part: follows directly by definition of NP-completeness.

Overview Cook-Levin Theorem 3SAT Summary

Proving NP-Completeness by Reduction: Proof

Proof.

First part: We must show X ≤p B for all X ∈ NP.

From X ≤p A (because A is NP-hard) and A ≤p B
(by prerequisite), this follows due to the transitivity of ≤p.

Second part: follows directly by definition of NP-completeness.

Overview Cook-Levin Theorem 3SAT Summary

Proving NP-Completeness by Reduction: Proof

Proof.

First part: We must show X ≤p B for all X ∈ NP.

From X ≤p A (because A is NP-hard) and A ≤p B
(by prerequisite), this follows due to the transitivity of ≤p.

Second part: follows directly by definition of NP-completeness.

Overview Cook-Levin Theorem 3SAT Summary

NP-Complete Problems

There are thousands of known NP-complete problems.

An extensive catalog of NP-complete problems
from many areas of computer science is contained in:

Michael R. Garey and David S. Johnson:
Computers and Intractability —
A Guide to the Theory of NP-Completeness
W. H. Freeman, 1979.

In the remaining chapters, we get to know
some of these problems.

Overview Cook-Levin Theorem 3SAT Summary

Overview of the Reductions

SAT

3SAT

Clique

IndSet

VertexCover

DirHamiltonCycle

HamiltonCycle

TSP

SubsetSum

Partition

BinPacking

Overview Cook-Levin Theorem 3SAT Summary

What Do We Have to Do?

We want to show the NP-completeness of these 11 problems.

We first show that SAT is NP-complete.

Then it is sufficient to show

that polynomial reductions exist for all edges in the figure
(and thus all problems are NP-hard)
and that the problems are all in NP.

(It would be sufficient to show membership in NP only for
the leaves in the figure. But membership is so easy to show
that this would not save any work.)

Overview Cook-Levin Theorem 3SAT Summary

Questions

Questions?

Overview Cook-Levin Theorem 3SAT Summary

Cook-Levin Theorem

Overview Cook-Levin Theorem 3SAT Summary

Course Overview

Theory

Background

Logic

Automata Theory

Turing Computability

Complexity

Nondeterminism

P, NP

Polynomial Reductions

Cook-Levin Theorem

NP-complete ProblemsMore Computability

Overview Cook-Levin Theorem 3SAT Summary

SAT is NP-complete

Definition (SAT)

The problem SAT (satisfiability) is defined as follows:

Given: a propositional logic formula ϕ

Question: Is ϕ satisfiable?

Theorem (Cook, 1971; Levin, 1973)

SAT is NP-complete.

Proof.

SAT ∈ NP: guess and check.
SAT is NP-hard: somewhat more complicated (to be continued)

. . .

Overview Cook-Levin Theorem 3SAT Summary

SAT is NP-complete

Definition (SAT)

The problem SAT (satisfiability) is defined as follows:

Given: a propositional logic formula ϕ

Question: Is ϕ satisfiable?

Theorem (Cook, 1971; Levin, 1973)

SAT is NP-complete.

Proof.

SAT ∈ NP: guess and check.
SAT is NP-hard: somewhat more complicated (to be continued)

. . .

Overview Cook-Levin Theorem 3SAT Summary

SAT is NP-complete

Definition (SAT)

The problem SAT (satisfiability) is defined as follows:

Given: a propositional logic formula ϕ

Question: Is ϕ satisfiable?

Theorem (Cook, 1971; Levin, 1973)

SAT is NP-complete.

Proof.

SAT ∈ NP: guess and check.
SAT is NP-hard: somewhat more complicated (to be continued)

. . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (1)

Proof (continued).

We must show: A ≤p SAT for all A ∈ NP.

Let A be an arbitrary problem in NP.

We have to find a polynomial reduction of A to SAT,
i. e., a function f computable in polynomial time
such that for every input word w over the alphabet of A:

w ∈ A iff f (w) is a satisfiable propositional formula. . . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (1)

Proof (continued).

We must show: A ≤p SAT for all A ∈ NP.

Let A be an arbitrary problem in NP.

We have to find a polynomial reduction of A to SAT,
i. e., a function f computable in polynomial time
such that for every input word w over the alphabet of A:

w ∈ A iff f (w) is a satisfiable propositional formula. . . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (2)

Proof (continued).

Because A ∈ NP, there is an NTM M and a polynomial p
such that M accepts the problem A in time p.

Idea: construct a formula that encodes the possible configurations
which M can reach in time p(|w |) on input w
and that is satisfiable if and only if
an end configuration can be reached in this time. . . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (3)

Proof (continued).

Let M = 〈Q,Σ, Γ, δ, q0,�,E 〉 be an NTM for A,
and let p be a polynomial bounding the computation time of M.
Without loss of generality, p(n) ≥ n for all n.

Let w = w1 . . .wn ∈ Σ∗ be the input for M.

We number the tape positions with integers (positive and
negative) such that the TM head initially is on position 1.

Observation: within p(n) computation steps the TM head
can only reach positions in the set
Pos = {−p(n) + 1,−p(n) + 2, . . . ,−1, 0, 1, . . . , p(n) + 1}.

Instead of infinitely many tape positions, we now only
need to consider these (polynomially many!) positions. . . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (3)

Proof (continued).

Let M = 〈Q,Σ, Γ, δ, q0,�,E 〉 be an NTM for A,
and let p be a polynomial bounding the computation time of M.
Without loss of generality, p(n) ≥ n for all n.

Let w = w1 . . .wn ∈ Σ∗ be the input for M.

We number the tape positions with integers (positive and
negative) such that the TM head initially is on position 1.

Observation: within p(n) computation steps the TM head
can only reach positions in the set
Pos = {−p(n) + 1,−p(n) + 2, . . . ,−1, 0, 1, . . . , p(n) + 1}.

Instead of infinitely many tape positions, we now only
need to consider these (polynomially many!) positions. . . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (3)

Proof (continued).

Let M = 〈Q,Σ, Γ, δ, q0,�,E 〉 be an NTM for A,
and let p be a polynomial bounding the computation time of M.
Without loss of generality, p(n) ≥ n for all n.

Let w = w1 . . .wn ∈ Σ∗ be the input for M.

We number the tape positions with integers (positive and
negative) such that the TM head initially is on position 1.

Observation: within p(n) computation steps the TM head
can only reach positions in the set
Pos = {−p(n) + 1,−p(n) + 2, . . . ,−1, 0, 1, . . . , p(n) + 1}.

Instead of infinitely many tape positions, we now only
need to consider these (polynomially many!) positions. . . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (3)

Proof (continued).

Let M = 〈Q,Σ, Γ, δ, q0,�,E 〉 be an NTM for A,
and let p be a polynomial bounding the computation time of M.
Without loss of generality, p(n) ≥ n for all n.

Let w = w1 . . .wn ∈ Σ∗ be the input for M.

We number the tape positions with integers (positive and
negative) such that the TM head initially is on position 1.

Observation: within p(n) computation steps the TM head
can only reach positions in the set
Pos = {−p(n) + 1,−p(n) + 2, . . . ,−1, 0, 1, . . . , p(n) + 1}.

Instead of infinitely many tape positions, we now only
need to consider these (polynomially many!) positions. . . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (4)

Proof (continued).

We can encode configurations of M by specifying:

what the current state of M is

on which position in Pos the TM head is located

which symbols from Γ the tape contains at positions Pos

 can be encoded by propositional variables

To encode a full computation (rather than just one configuration),
we need copies of these variables for each computation step.

We only need to consider the computation steps
Steps = {0, 1, . . . , p(n)} because M should accept
within p(n) steps. . . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (4)

Proof (continued).

We can encode configurations of M by specifying:

what the current state of M is

on which position in Pos the TM head is located

which symbols from Γ the tape contains at positions Pos

 can be encoded by propositional variables

To encode a full computation (rather than just one configuration),
we need copies of these variables for each computation step.

We only need to consider the computation steps
Steps = {0, 1, . . . , p(n)} because M should accept
within p(n) steps. . . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (4)

Proof (continued).

We can encode configurations of M by specifying:

what the current state of M is

on which position in Pos the TM head is located

which symbols from Γ the tape contains at positions Pos

 can be encoded by propositional variables

To encode a full computation (rather than just one configuration),
we need copies of these variables for each computation step.

We only need to consider the computation steps
Steps = {0, 1, . . . , p(n)} because M should accept
within p(n) steps. . . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (5)

Proof (continued).

Use the following propositional variables in formula f (w):

statet,q (t ∈ Steps, q ∈ Q)
 encodes the state of the NTM in the t-th configuration

headt,i (t ∈ Steps, i ∈ Pos)
 encodes the head position in the t-th configuration

tapet,i ,a (t ∈ Steps, i ∈ Pos, a ∈ Γ)
 encodes the tape content in the t-th configuration

Construct f (w) such that every satisfying interpretation

describes a sequence of TM configurations

that begins with the start configuration,

reaches an accepting configuration

and follows the TM rules in δ

. . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (6)

Proof (continued).

Auxiliary formula:

oneof X :=

(∨
x∈X

x

)
∧ ¬

∨
x∈X

∨
y∈X\{x}

(x ∧ y)


Auxiliary notation:

The symbol ⊥ stands for an arbitrary unsatisfiable formula
(e.g., (A ∧ ¬A), where A is an arbitrary proposition). . . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (7)

Proof (continued).

1. describe the configurations of the TM:

Valid :=
∧

t∈Steps

(
oneof {statet,q | q ∈ Q} ∧

oneof {headt,i | i ∈ Pos} ∧∧
i∈Pos

oneof {tapet,i ,a | a ∈ Γ}
)

. . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (8)

Proof (continued).

2. begin in the start configuration

Init := state0,q0 ∧ head0,1 ∧
n∧

i=1

tape0,i ,wi
∧

∧
i∈Pos\{1,...,n}

tape0,i ,�

. . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (9)

Proof (continued).

3. reach an accepting configuration

Accept :=
∨

t∈Steps

∨
qe∈E

statet,qe

. . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (10)

Proof (continued).

4. follow the rules in δ:

Trans :=
∧

t∈Steps

 ∨
qe∈E

statet,qe ∨
∨
R∈δ

Rulet,R


where.

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (11)

Proof (continued).

4. follow the rules in δ (continued):

Rulet,〈〈q,a〉,〈q′,a′,D〉〉 :=

statet,q ∧ statet+1,q′ ∧∧
i∈Pos

(
headt,i → tapet,i ,a ∧ headt+1,i+D ∧ tapet+1,i ,a′

)
∧∧

i∈Pos

∧
a′′∈Γ

(
¬headt,i ∧ tapet,i ,a′′ → tapet+1,i ,a′′

)

For D, interpret L −1, N 0, R +1.

special case: tape and head variables with a tape index i + D
outside of Pos are replaced by ⊥; likewise all variables
with a time index outside of Steps.

. . .

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (12)

Proof (continued).

Putting the pieces together:

Set f (w) := Valid ∧ Init ∧ Accept ∧ Trans.

f (w) can be constructed in time polynomial in |w |.
w ∈ A iff M accepts w in p(|w |) steps
w ∈ A iff f (w) is satisfiable
w ∈ A iff f (w) ∈ SAT

 A ≤p SAT

Since A ∈ NP was arbitrary, this is true for every A ∈ NP.
Hence SAT is NP-hard and thus also NP-complete.

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (12)

Proof (continued).

Putting the pieces together:

Set f (w) := Valid ∧ Init ∧ Accept ∧ Trans.

f (w) can be constructed in time polynomial in |w |.
w ∈ A iff M accepts w in p(|w |) steps
w ∈ A iff f (w) is satisfiable
w ∈ A iff f (w) ∈ SAT

 A ≤p SAT

Since A ∈ NP was arbitrary, this is true for every A ∈ NP.
Hence SAT is NP-hard and thus also NP-complete.

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (12)

Proof (continued).

Putting the pieces together:

Set f (w) := Valid ∧ Init ∧ Accept ∧ Trans.

f (w) can be constructed in time polynomial in |w |.
w ∈ A iff M accepts w in p(|w |) steps
w ∈ A iff f (w) is satisfiable
w ∈ A iff f (w) ∈ SAT

 A ≤p SAT

Since A ∈ NP was arbitrary, this is true for every A ∈ NP.
Hence SAT is NP-hard and thus also NP-complete.

Overview Cook-Levin Theorem 3SAT Summary

NP-hardness of SAT (12)

Proof (continued).

Putting the pieces together:

Set f (w) := Valid ∧ Init ∧ Accept ∧ Trans.

f (w) can be constructed in time polynomial in |w |.
w ∈ A iff M accepts w in p(|w |) steps
w ∈ A iff f (w) is satisfiable
w ∈ A iff f (w) ∈ SAT

 A ≤p SAT

Since A ∈ NP was arbitrary, this is true for every A ∈ NP.
Hence SAT is NP-hard and thus also NP-complete.

Overview Cook-Levin Theorem 3SAT Summary

Questions

Questions?

Overview Cook-Levin Theorem 3SAT Summary

3SAT

Overview Cook-Levin Theorem 3SAT Summary

Course Overview

Theory

Background

Logic

Automata Theory

Turing Computability

Complexity

Nondeterminism

P, NP

Polynomial Reductions

Cook-Levin Theorem

NP-complete ProblemsMore Computability

Overview Cook-Levin Theorem 3SAT Summary

SAT ≤p 3SAT

SAT

3SAT

Clique

IndSet

VertexCover

DirHamiltonCycle

HamiltonCycle

TSP

SubsetSum

Partition

BinPacking

Overview Cook-Levin Theorem 3SAT Summary

SAT and 3SAT

Definition (Reminder: SAT)

The problem SAT (satisfiability) is defined as follows:

Given: a propositional logic formula ϕ

Question: Is ϕ satisfiable?

Definition (3SAT)

The problem 3SAT is defined as follows:

Given: a propositional logic formula ϕ in conjunctive normal form
with at most three literals per clause

Question: Is ϕ satisfiable?

Overview Cook-Levin Theorem 3SAT Summary

3SAT is NP-Complete (1)

Theorem (3SAT is NP-Complete)

3SAT is NP-complete.

Overview Cook-Levin Theorem 3SAT Summary

3SAT is NP-Complete (2)

Proof.

3SAT ∈ NP: guess and check.

3SAT is NP-hard: We show SAT ≤p 3SAT.

Let ϕ be the given input for SAT. Let Sub(ϕ) denote
the set of subformulas of ϕ, including ϕ itself.

For all ψ ∈ Sub(ϕ), we introduce a new proposition Xψ.

For each new proposition Xψ, define the following
auxiliary formula χψ:

If ψ = A for an atom A: χψ = (Xψ ↔ A)
If ψ = ¬ψ′: χψ = (Xψ ↔ ¬Xψ′)
If ψ = (ψ′ ∧ ψ′′): χψ = (Xψ ↔ (Xψ′ ∧ Xψ′′))
If ψ = (ψ′ ∨ ψ′′): χψ = (Xψ ↔ (Xψ′ ∨ Xψ′′))

. . .

Overview Cook-Levin Theorem 3SAT Summary

3SAT is NP-Complete (2)

Proof.

3SAT ∈ NP: guess and check.

3SAT is NP-hard: We show SAT ≤p 3SAT.

Let ϕ be the given input for SAT. Let Sub(ϕ) denote
the set of subformulas of ϕ, including ϕ itself.

For all ψ ∈ Sub(ϕ), we introduce a new proposition Xψ.

For each new proposition Xψ, define the following
auxiliary formula χψ:

If ψ = A for an atom A: χψ = (Xψ ↔ A)
If ψ = ¬ψ′: χψ = (Xψ ↔ ¬Xψ′)
If ψ = (ψ′ ∧ ψ′′): χψ = (Xψ ↔ (Xψ′ ∧ Xψ′′))
If ψ = (ψ′ ∨ ψ′′): χψ = (Xψ ↔ (Xψ′ ∨ Xψ′′))

. . .

Overview Cook-Levin Theorem 3SAT Summary

3SAT is NP-Complete (2)

Proof.

3SAT ∈ NP: guess and check.

3SAT is NP-hard: We show SAT ≤p 3SAT.

Let ϕ be the given input for SAT. Let Sub(ϕ) denote
the set of subformulas of ϕ, including ϕ itself.

For all ψ ∈ Sub(ϕ), we introduce a new proposition Xψ.

For each new proposition Xψ, define the following
auxiliary formula χψ:

If ψ = A for an atom A: χψ = (Xψ ↔ A)
If ψ = ¬ψ′: χψ = (Xψ ↔ ¬Xψ′)
If ψ = (ψ′ ∧ ψ′′): χψ = (Xψ ↔ (Xψ′ ∧ Xψ′′))
If ψ = (ψ′ ∨ ψ′′): χψ = (Xψ ↔ (Xψ′ ∨ Xψ′′))

. . .

Overview Cook-Levin Theorem 3SAT Summary

3SAT is NP-Complete (3)

Proof (continued).

Consider the conjunction of all these auxiliary formulas,
χall :=

∧
ψ∈Sub(ϕ) χψ.

Every interpretation I of the original variables can be
extended to a model I ′ of χall in exactly one way:
for each ψ ∈ Sub(ϕ), set I ′(Xψ) = 1 iff I |= ψ.

It follows that ϕ is satisfiable iff (χall ∧ Xϕ) is satisfiable.

This formula can be computed in linear time.

It can also be converted to 3-CNF in linear time
because it is the conjunction of constant-size parts
involving at most three variables each.
(Each part can be converted to 3-CNF independently.)

Hence, this describes a polynomial-time reduction.

Overview Cook-Levin Theorem 3SAT Summary

3SAT is NP-Complete (3)

Proof (continued).

Consider the conjunction of all these auxiliary formulas,
χall :=

∧
ψ∈Sub(ϕ) χψ.

Every interpretation I of the original variables can be
extended to a model I ′ of χall in exactly one way:
for each ψ ∈ Sub(ϕ), set I ′(Xψ) = 1 iff I |= ψ.

It follows that ϕ is satisfiable iff (χall ∧ Xϕ) is satisfiable.

This formula can be computed in linear time.

It can also be converted to 3-CNF in linear time
because it is the conjunction of constant-size parts
involving at most three variables each.
(Each part can be converted to 3-CNF independently.)

Hence, this describes a polynomial-time reduction.

Overview Cook-Levin Theorem 3SAT Summary

3SAT is NP-Complete (3)

Proof (continued).

Consider the conjunction of all these auxiliary formulas,
χall :=

∧
ψ∈Sub(ϕ) χψ.

Every interpretation I of the original variables can be
extended to a model I ′ of χall in exactly one way:
for each ψ ∈ Sub(ϕ), set I ′(Xψ) = 1 iff I |= ψ.

It follows that ϕ is satisfiable iff (χall ∧ Xϕ) is satisfiable.

This formula can be computed in linear time.

It can also be converted to 3-CNF in linear time
because it is the conjunction of constant-size parts
involving at most three variables each.
(Each part can be converted to 3-CNF independently.)

Hence, this describes a polynomial-time reduction.

Overview Cook-Levin Theorem 3SAT Summary

3SAT is NP-Complete (3)

Proof (continued).

Consider the conjunction of all these auxiliary formulas,
χall :=

∧
ψ∈Sub(ϕ) χψ.

Every interpretation I of the original variables can be
extended to a model I ′ of χall in exactly one way:
for each ψ ∈ Sub(ϕ), set I ′(Xψ) = 1 iff I |= ψ.

It follows that ϕ is satisfiable iff (χall ∧ Xϕ) is satisfiable.

This formula can be computed in linear time.

It can also be converted to 3-CNF in linear time
because it is the conjunction of constant-size parts
involving at most three variables each.
(Each part can be converted to 3-CNF independently.)

Hence, this describes a polynomial-time reduction.

Overview Cook-Levin Theorem 3SAT Summary

3SAT is NP-Complete (3)

Proof (continued).

Consider the conjunction of all these auxiliary formulas,
χall :=

∧
ψ∈Sub(ϕ) χψ.

Every interpretation I of the original variables can be
extended to a model I ′ of χall in exactly one way:
for each ψ ∈ Sub(ϕ), set I ′(Xψ) = 1 iff I |= ψ.

It follows that ϕ is satisfiable iff (χall ∧ Xϕ) is satisfiable.

This formula can be computed in linear time.

It can also be converted to 3-CNF in linear time
because it is the conjunction of constant-size parts
involving at most three variables each.
(Each part can be converted to 3-CNF independently.)

Hence, this describes a polynomial-time reduction.

Overview Cook-Levin Theorem 3SAT Summary

3SAT is NP-Complete (3)

Proof (continued).

Consider the conjunction of all these auxiliary formulas,
χall :=

∧
ψ∈Sub(ϕ) χψ.

Every interpretation I of the original variables can be
extended to a model I ′ of χall in exactly one way:
for each ψ ∈ Sub(ϕ), set I ′(Xψ) = 1 iff I |= ψ.

It follows that ϕ is satisfiable iff (χall ∧ Xϕ) is satisfiable.

This formula can be computed in linear time.

It can also be converted to 3-CNF in linear time
because it is the conjunction of constant-size parts
involving at most three variables each.
(Each part can be converted to 3-CNF independently.)

Hence, this describes a polynomial-time reduction.

Overview Cook-Levin Theorem 3SAT Summary

Restricted 3SAT

Note: 3SAT remains NP-complete if we also require that

every clause contains exactly three literals and

a clause may not contain the same literal twice

Idea:

remove duplicated literals from each clause.

add new variables: X , Y , Z

add new clauses: (X ∨Y ∨ Z), (X ∨Y ∨¬Z), (X ∨¬Y ∨ Z),
(¬X ∨ Y ∨ Z), (X ∨ ¬Y ∨ ¬Z), (¬X ∨ Y ∨ ¬Z),
(¬X ∨ ¬Y ∨ Z)

 satisfied if and only if X , Y , Z are all true

fill up clauses with fewer than three literals
with ¬X and if necessary additionally with ¬Y

Overview Cook-Levin Theorem 3SAT Summary

Restricted 3SAT

Note: 3SAT remains NP-complete if we also require that

every clause contains exactly three literals and

a clause may not contain the same literal twice

Idea:

remove duplicated literals from each clause.

add new variables: X , Y , Z

add new clauses: (X ∨Y ∨ Z), (X ∨Y ∨¬Z), (X ∨¬Y ∨ Z),
(¬X ∨ Y ∨ Z), (X ∨ ¬Y ∨ ¬Z), (¬X ∨ Y ∨ ¬Z),
(¬X ∨ ¬Y ∨ Z)

 satisfied if and only if X , Y , Z are all true

fill up clauses with fewer than three literals
with ¬X and if necessary additionally with ¬Y

Overview Cook-Levin Theorem 3SAT Summary

Restricted 3SAT

Note: 3SAT remains NP-complete if we also require that

every clause contains exactly three literals and

a clause may not contain the same literal twice

Idea:

remove duplicated literals from each clause.

add new variables: X , Y , Z

add new clauses: (X ∨Y ∨ Z), (X ∨Y ∨¬Z), (X ∨¬Y ∨ Z),
(¬X ∨ Y ∨ Z), (X ∨ ¬Y ∨ ¬Z), (¬X ∨ Y ∨ ¬Z),
(¬X ∨ ¬Y ∨ Z)

 satisfied if and only if X , Y , Z are all true

fill up clauses with fewer than three literals
with ¬X and if necessary additionally with ¬Y

Overview Cook-Levin Theorem 3SAT Summary

Restricted 3SAT

Note: 3SAT remains NP-complete if we also require that

every clause contains exactly three literals and

a clause may not contain the same literal twice

Idea:

remove duplicated literals from each clause.

add new variables: X , Y , Z

add new clauses: (X ∨Y ∨ Z), (X ∨Y ∨¬Z), (X ∨¬Y ∨ Z),
(¬X ∨ Y ∨ Z), (X ∨ ¬Y ∨ ¬Z), (¬X ∨ Y ∨ ¬Z),
(¬X ∨ ¬Y ∨ Z)

 satisfied if and only if X , Y , Z are all true

fill up clauses with fewer than three literals
with ¬X and if necessary additionally with ¬Y

Overview Cook-Levin Theorem 3SAT Summary

Restricted 3SAT

Note: 3SAT remains NP-complete if we also require that

every clause contains exactly three literals and

a clause may not contain the same literal twice

Idea:

remove duplicated literals from each clause.

add new variables: X , Y , Z

add new clauses: (X ∨Y ∨ Z), (X ∨Y ∨¬Z), (X ∨¬Y ∨ Z),
(¬X ∨ Y ∨ Z), (X ∨ ¬Y ∨ ¬Z), (¬X ∨ Y ∨ ¬Z),
(¬X ∨ ¬Y ∨ Z)

 satisfied if and only if X , Y , Z are all true

fill up clauses with fewer than three literals
with ¬X and if necessary additionally with ¬Y

Overview Cook-Levin Theorem 3SAT Summary

Questions

Questions?

Overview Cook-Levin Theorem 3SAT Summary

Summary

Overview Cook-Levin Theorem 3SAT Summary

Summary

Thousands of important problems are NP-complete.

The satisfiability problem of propositional logic (SAT)
is NP-complete.

Proof idea for NP-hardness:

Every problem in NP can be solved by an NTM
in polynomial time p(|w |) for input w .
Given a word w , construct a propositional logic formula ϕ
that encodes the computation steps of the NTM on input w .
Construct ϕ so that it is satisfiable if and only if
there is an accepting computation of length p(|w |).

Usually (as seen for 3SAT), the easiest way to show
that another problem is NP-complete is to

show that it is in NP with a guess-and-check algorithm, and
polynomially reduce a known NP-complete to it.

	Overview
	Cook-Levin Theorem
	3SAT
	Summary

