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E2. P, NP and Polynomial Reductions

Accepting a Word in Time n

Definition (Accepting a Word in Time n)
Let M be a DTM or NTM with input alphabet %,
w € Y* aword and n € Ny.
M accepts w in time n if there is a sequence of configurations
o, ..., Ck with kK < n, where:
> (g is the start configuration for w,
» gkt F ¢k, and

> ¢, is an end configuration.

German: M akzeptiert w in Zeit n
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E2. P, NP and Polynomial Reductions P and NP

Accepting a Language in Time f

Definition (Accepting a Language in Time f)
Let M be a DTM or NTM with input alphabet %,
L C ¥* a language and f : Ng — Np a function.

M accepts L in time f if:
@ for all words w € L: M accepts w in time f(|w|)
@ for all words w ¢ L: M does not accept w

German: M akzeptiert L in Zeit f
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E2. P, NP and Polynomial Reductions

P and NP

Definition (P and NP)
P is the set of all languages L for which a DTM M
and a polynomial p exist such that M accepts L in time p.

NP is the set of all languages L for which an NTM M
and a polynomial p exist such that M accepts L in time p.
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E2. P, NP and Polynomial Reductions P and NP

P and NP: Remarks

> Sets of languages like P and NP that are defined
in terms of computation time of TMs
(or other computation models) are called complexity classes.

» We know that P C NP. (Why?)

» Whether the converse is also true is an open question:
this is the famous P-NP problem.

German: Komplexitatsklassen, P-NP-Problem
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E2. P, NP and Polynomial Reductions P and NP

Example: DIRHAMILTONCYCLE € NP

Example (DIRHAMILTONCYCLE € NP)
The nondeterministic algorithm of Chapter E1 solves the problem
and can be implemented on an NTM in polynomial time.

» |s DIRHAMILTONCYCLE € P also true?
» The answer is unknown.

» So far, only exponential deterministic algorithms
for the problem are known.
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E2. P, NP and Polynomial Reductions P and NP

Simulation of NTMs with DTMs

» Unlike DTMs, NTMs are not a realistic computation model:
they cannot be directly implemented on computers.

> But NTMs can be simulated by systematically trying
all computation paths, e. g., with a breadth-first search.

More specifically:

» Let M be an NTM that accepts language L in time f,
where f(n) > n for all n € Np.

» Then we can specify a DTM M’ that accepts L in time f,
where f(n) = 20(f(m),

» without proof
(cf. “Introduction to the Theory of Computation”
by Michael Sipser (3rd edition), Theorem 7.11)
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E2. P, NP and Polynomial Reductions Polynomial Reductions

E2.2 Polynomial Reductions
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E2. P, NP and Polynomial Reductions Polynomial Reductions

Polynomial Reductions: ldea

» Reductions are a common and powerful concept in computer
science. We know them from Part D.

» The basic idea is that we solve a new problem by reducing it
to a known problem.

> In complexity theory we want to use reductions
that allow us to prove statements of the following kind:

Problem A can be solved efficiently
if problem B can be solved efficiently.

» For this, we need a reduction from A to B
that can be computed efficiently itself
(otherwise it would be useless for efficiently solving A).
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Polynomial Reductions

E2. P, NP and Polynomial Reductions

Polynomial Reductions

Definition (Polynomial Reduction)
Let AC Y* and B C I'* be decision problems.
We say that A can be polynomially reduced to B,
written A <, B, if there is a function f : ¥* — I'* such that:
» f can be computed in polynomial time by a DTM
> i.e., there is a polynomial p and a DTM M such that M
computes f(w) in at most p(|w|) steps given input w € X*
> f reduces A to B
» ie, forallweX*: weAiff f(w) € B

f is called a polynomial reduction from A to B

German: A polynomiell auf B reduzierbar,
polynomielle Reduktion von A auf B
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E2. P, NP and Polynomial Reductions Polynomial Reductions

Polynomial Reductions: Remarks

» Polynomial reductions are also called Karp reductions
(after Richard Karp, who wrote a famous paper
describing many such reductions in 1972).

> In practice, of course we do not have to specify a DTM for f:
it just has to be clear that f can be computed
in polynomial time by a deterministic algorithm.
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E2. P, NP and Polynomial Reductions Polynomial Reductions

Polynomial Reductions: Example (1)

Definition (HAMILTONCYCLE)
HaMILTONCYCLE is the following decision problem:

» Given: undirected graph G = (V, E)

» Question: Does G contain a Hamilton cycle?

Reminder:

Definition (Hamilton Cycle)
A Hamilton cycle of G is a sequence of vertices in V,
7 = (o, ..., Vn), with the following properties:
> 1 is a path: there is an edge from v; to vj;1 forall 0 < i < n
> 7T is acycle: vog = v,
» 7 is simple: v; # vj forall i # j with i,j <n
» 1 is Hamiltonian: all nodes of V are included in 7
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E2. P, NP and Polynomial Reductions Polynomial Reductions

Polynomial Reductions: Example (2)

Definition (TSP)
TSP (traveling salesperson problem) is the following
decision problem:
» Given: finite set S # () of cities, symmetric cost function
cost: S x § — Ny, cost bound K € Np
» Question: Is there a tour with total cost at most K, i.e.,
a permutation (si, ..., s,) of the cities with
S 11 cost(si, si11) + cost(sy, s1) < K?

German: Problem der/des Handlungsreisenden
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E2. P, NP and Polynomial Reductions Polynomial Reductions

Polynomial Reductions: Example (3)

Theorem (HAMILTONCYCLE <, TSP)
HAaMILTONCYCLE <, TSP.

Proof.
~ blackboard O
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E2. P, NP and Polynomial Reductions Polynomial Reductions

Properties of Polynomial Reductions (1)

Theorem (Properties of Polynomial Reductions)
Let A, B and C decision problems.

Q@ IfA<,Band Bc P, then Ac P.
Q@ IfA<, B and B € NP, then Ac NP.
Q@ IfA<,Band A¢ P, then B ¢ P.
Q IfA<, Band A¢ NP, then B ¢ NP.
Q@ IfFA<,Band B<,C, then A<, C.
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E2. P, NP and Polynomial Reductions

Properties of Polynomial Reductions (2)

Proof.
for 1.

We must show that there is a DTM accepting A
in polynomial time.

We know:
» There is a DTM Mg that accepts B in time p,
where p is a polynomial.

» There is a DTM My that computes a reduction from A to B

in time g, where g is a polynomial.
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E2. P, NP and Polynomial Reductions Polynomial Reductions

Properties of Polynomial Reductions (3)

Proof (continued).

Consider the machine M that first behaves like My, and then
(after My stops) behaves like Mg on the output of M.

M accepts A:

» M behaves on input w as Mg does on input f(w),
so it accepts w if and only if f(w) € B.

» Because f is a reduction, w € A iff f(w) € B.
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E2. P, NP and Polynomial Reductions

Properties of Polynomial Reductions (4)

Proof (continued).
Computation time of M on input w:
» first M¢ runs on input w: < g(|w|) steps
» then Mg runs on input f(w): < p(|f(w)|) steps
» |f(w)] < |w|+ g(|w|) because in g(|w]|) steps,
M¢ can write at most g(|w|) additional symbols onto the tape
~~ total computation time < q(|w|) + p(|f(w)])
< q(lw]) + p(jw| + q(|w]))
~ this is polynomial in |w| ~~ A € P.
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E2. P, NP and Polynomial Reductions Polynomial Reductions

Properties of Polynomial Reductions (5)

Proof (continued).

for 2.

analogous to 1., only that Mg and M are NTMs
of 3.4+4.:

equivalent formulations of 1.4-2. (contraposition)
of 5.

Let A <, B with reduction f and B <, C with reduction g.
Then g o f is a reduction of A to C.

The computation time of the two computations in sequence
is polynomial by the same argument used in the proof for 1. O
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E2. P, NP and Polynomial Reductions NP-Hardness and NP-Completeness

E2.3 NP-Hardness and
P-Completeness
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E2. P, NP and Polynomial Reductions NP-Hardness and NP-Completeness

NP-Hardness and NP-Completeness

Definition (NP-Hard, NP-Complete)
Let B be a decision problem.

B is called NP-hard if A <, B for all problems A € NP.
B is called NP-complete if B € NP and B is NP-hard.

German: NP-hart (selten: NP-schwer), NP-vollstandig
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E2. P, NP and Polynomial Reductions NP-Hardness and NP-Completeness

NP-Complete Problems: Meaning

> NP-hard problems are “at least as difficult”
as all problems in NP.

» NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

» If A€ P for any NP-complete problem, then P = NP. (Why?)

» That means that either there are efficient algorithms
for all NP-complete problems or for none of them.

» Do NP-complete problems actually exist?
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E2.4 Summary
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E2. P, NP and Polynomial Reductions Summary

Summary

v

P: languages accepted by DTMs in polynomial time
» NP: languages accepted by NTMs in polynomial time

» polynomial reductions: A <, B if
there is a total function f computable in polynomial time,
such that for all words w: w € A iff f(w) € B

» A <, B implies that A is “at most as difficult” as B
» polynomial reductions are transitive

» NP-hard problems B: A <, B for all A€ NP

» NP-complete problems B: B € NP and B is NP-hard
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