Theory of Computer Science
E2. P, NP and Polynomial Reductions

Gabriele Roger

University of Basel

April 29, 2019

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019

1/29

Theory of Computer Science
April 29, 2019 — E2. P, NP and Polynomial Reductions

E2.1 P and NP
E2.2 Polynomial Reductions
E2.3 NP-Hardness and NP-Completeness

E2.4 Summary

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 2/29

E2. P, NP and Polynomial Reductions P and NP

E2.1 P and NP

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 3/29

E2. P, NP and Polynomial Reductions

Course Overview

Gabriele Roger (University of Basel)

_|

Background |

P and NP

_|

—| Automata Theory |

Logic |

% Turing Computability|

_|
L Pw]

—I Polynomial Reductions |

Nondeterminism |

—| Cook-Levin Theorem |

—| More Computability |

Theory of Computer Science

—I NP-complete Problems |

April 29, 2019

4/29

E2. P, NP and Polynomial Reductions

Accepting a Word in Time n

Definition (Accepting a Word in Time n)
Let M be a DTM or NTM with input alphabet %,
w € Y* aword and n € Ny.
M accepts w in time n if there is a sequence of configurations
o, ..., Ck with kK < n, where:
> (g is the start configuration for w,
» gkt F ¢k, and

> ¢, is an end configuration.

German: M akzeptiert w in Zeit n

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019

P and NP

5/

E2. P, NP and Polynomial Reductions P and NP

Accepting a Language in Time f

Definition (Accepting a Language in Time f)
Let M be a DTM or NTM with input alphabet %,
L C ¥* a language and f : Ng — Np a function.

M accepts L in time f if:
@ for all words w € L: M accepts w in time f(|w|)
@ for all words w ¢ L: M does not accept w

German: M akzeptiert L in Zeit f

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 6 /29

E2. P, NP and Polynomial Reductions

P and NP

Definition (P and NP)
P is the set of all languages L for which a DTM M
and a polynomial p exist such that M accepts L in time p.

NP is the set of all languages L for which an NTM M
and a polynomial p exist such that M accepts L in time p.

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019

P and NP

7/

E2. P, NP and Polynomial Reductions P and NP

P and NP: Remarks

> Sets of languages like P and NP that are defined
in terms of computation time of TMs
(or other computation models) are called complexity classes.

» We know that P C NP. (Why?)

» Whether the converse is also true is an open question:
this is the famous P-NP problem.

German: Komplexitatsklassen, P-NP-Problem

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 8 /29

E2. P, NP and Polynomial Reductions P and NP

Example: DIRHAMILTONCYCLE € NP

Example (DIRHAMILTONCYCLE € NP)
The nondeterministic algorithm of Chapter E1 solves the problem
and can be implemented on an NTM in polynomial time.

» |s DIRHAMILTONCYCLE € P also true?
» The answer is unknown.

» So far, only exponential deterministic algorithms
for the problem are known.

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 9/29

E2. P, NP and Polynomial Reductions P and NP

Simulation of NTMs with DTMs

» Unlike DTMs, NTMs are not a realistic computation model:
they cannot be directly implemented on computers.

> But NTMs can be simulated by systematically trying
all computation paths, e. g., with a breadth-first search.

More specifically:

» Let M be an NTM that accepts language L in time f,
where f(n) > n for all n € Np.

» Then we can specify a DTM M’ that accepts L in time f,
where f(n) = 20(f(m),

» without proof
(cf. “Introduction to the Theory of Computation”
by Michael Sipser (3rd edition), Theorem 7.11)

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 10 /29

E2. P, NP and Polynomial Reductions Polynomial Reductions

E2.2 Polynomial Reductions

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 11 /29

E2. P, NP and Polynomial Reductions

Course Overview

Gabriele Roger (University of Basel)

_|

Background |

Polynomial Reductions

_|

Logic |

_|

Nondeterminism |

—| Automata Theory |

% Turing Computability|

— P, NP |

—| Cook-Levin Theorem |

—| More Computability |

Theory of Computer Science

—I NP-complete Problems |

April 29, 2019

12 /29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Polynomial Reductions: ldea

» Reductions are a common and powerful concept in computer
science. We know them from Part D.

» The basic idea is that we solve a new problem by reducing it
to a known problem.

> In complexity theory we want to use reductions
that allow us to prove statements of the following kind:

Problem A can be solved efficiently
if problem B can be solved efficiently.

» For this, we need a reduction from A to B
that can be computed efficiently itself
(otherwise it would be useless for efficiently solving A).

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 13 /29

Polynomial Reductions

E2. P, NP and Polynomial Reductions

Polynomial Reductions

Definition (Polynomial Reduction)
Let AC Y* and B C I'* be decision problems.
We say that A can be polynomially reduced to B,
written A <, B, if there is a function f : ¥* — I'* such that:
» f can be computed in polynomial time by a DTM
> i.e., there is a polynomial p and a DTM M such that M
computes f(w) in at most p(|w|) steps given input w € X*
> f reduces A to B
» ie, forallweX*: weAiff f(w) € B

f is called a polynomial reduction from A to B

German: A polynomiell auf B reduzierbar,
polynomielle Reduktion von A auf B

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019

14 / 29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Polynomial Reductions: Remarks

» Polynomial reductions are also called Karp reductions
(after Richard Karp, who wrote a famous paper
describing many such reductions in 1972).

> In practice, of course we do not have to specify a DTM for f:
it just has to be clear that f can be computed
in polynomial time by a deterministic algorithm.

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 15 / 29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Polynomial Reductions: Example (1)

Definition (HAMILTONCYCLE)
HaMILTONCYCLE is the following decision problem:

» Given: undirected graph G = (V, E)

» Question: Does G contain a Hamilton cycle?

Reminder:

Definition (Hamilton Cycle)
A Hamilton cycle of G is a sequence of vertices in V,
7 = (o, ..., Vn), with the following properties:
> 1 is a path: there is an edge from v; to vj;1 forall 0 < i < n
> 7T is acycle: vog = v,
» 7 is simple: v; # vj forall i # j with i,j <n
» 1 is Hamiltonian: all nodes of V are included in 7

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 16 / 29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Polynomial Reductions: Example (2)

Definition (TSP)
TSP (traveling salesperson problem) is the following
decision problem:
» Given: finite set S # () of cities, symmetric cost function
cost: S x § — Ny, cost bound K € Np
» Question: Is there a tour with total cost at most K, i.e.,
a permutation (si, ..., s,) of the cities with
S 11 cost(si, si11) + cost(sy, s1) < K?

German: Problem der/des Handlungsreisenden

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 17 / 29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Polynomial Reductions: Example (3)

Theorem (HAMILTONCYCLE <, TSP)
HAaMILTONCYCLE <, TSP.

Proof.
~ blackboard O

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 18 / 29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Properties of Polynomial Reductions (1)

Theorem (Properties of Polynomial Reductions)
Let A, B and C decision problems.

Q@ IfA<,Band Bc P, then Ac P.
Q@ IfA<, B and B € NP, then Ac NP.
Q@ IfA<,Band A¢ P, then B ¢ P.
Q IfA<, Band A¢ NP, then B ¢ NP.
Q@ IfFA<,Band B<,C, then A<, C.

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 19 / 29

E2. P, NP and Polynomial Reductions

Properties of Polynomial Reductions (2)

Proof.
for 1.

We must show that there is a DTM accepting A
in polynomial time.

We know:
» There is a DTM Mg that accepts B in time p,
where p is a polynomial.

» There is a DTM My that computes a reduction from A to B

in time g, where g is a polynomial.

Gabriele Roger (University of Basel) Theory of Computer Science

Polynomial Reductions

April 29, 2019

20 / 29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Properties of Polynomial Reductions (3)

Proof (continued).

Consider the machine M that first behaves like My, and then
(after My stops) behaves like Mg on the output of M.

M accepts A:

» M behaves on input w as Mg does on input f(w),
so it accepts w if and only if f(w) € B.

» Because f is a reduction, w € A iff f(w) € B.

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 21 /29

E2. P, NP and Polynomial Reductions

Properties of Polynomial Reductions (4)

Proof (continued).
Computation time of M on input w:
» first M¢ runs on input w: < g(|w|) steps
» then Mg runs on input f(w): < p(|f(w)|) steps
» |f(w)] < |w|+ g(|w|) because in g(|w]|) steps,
M¢ can write at most g(|w|) additional symbols onto the tape
~~ total computation time < q(|w|) + p(|f(w)])
< q(lw]) + p(jw| + q(|w]))
~ this is polynomial in |w| ~~ A € P.

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 22

Polynomial Reductions

29

E2. P, NP and Polynomial Reductions Polynomial Reductions

Properties of Polynomial Reductions (5)

Proof (continued).

for 2.

analogous to 1., only that Mg and M are NTMs
of 3.4+4.:

equivalent formulations of 1.4-2. (contraposition)
of 5.

Let A <, B with reduction f and B <, C with reduction g.
Then g o f is a reduction of A to C.

The computation time of the two computations in sequence
is polynomial by the same argument used in the proof for 1. O

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 23 /29

E2. P, NP and Polynomial Reductions NP-Hardness and NP-Completeness

E2.3 NP-Hardness and
P-Completeness

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 24 /29

E2. P, NP and Polynomial Reductions

Course Overview

Gabriele Roger (University of Basel)

—| Background |

NP-Hardness and NP-Completeness

—| Logic |

—| Automata Theory |

% Turing Computability|

—| Nondeterminism |

—| Cook-Levin Theorem |

—| More Computability |

Theory of Computer Science

—I NP-complete Problems |

April 29, 2019

25 / 29

E2. P, NP and Polynomial Reductions NP-Hardness and NP-Completeness

NP-Hardness and NP-Completeness

Definition (NP-Hard, NP-Complete)
Let B be a decision problem.

B is called NP-hard if A <, B for all problems A € NP.
B is called NP-complete if B € NP and B is NP-hard.

German: NP-hart (selten: NP-schwer), NP-vollstandig

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 26 /29

E2. P, NP and Polynomial Reductions NP-Hardness and NP-Completeness

NP-Complete Problems: Meaning

> NP-hard problems are “at least as difficult”
as all problems in NP.

» NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

» If A€ P for any NP-complete problem, then P = NP. (Why?)

» That means that either there are efficient algorithms
for all NP-complete problems or for none of them.

» Do NP-complete problems actually exist?

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 27 /29

E2. P, NP and Polynomial Reductions Summary

E2.4 Summary

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 28 /29

E2. P, NP and Polynomial Reductions Summary

Summary

v

P: languages accepted by DTMs in polynomial time
» NP: languages accepted by NTMs in polynomial time

» polynomial reductions: A <, B if
there is a total function f computable in polynomial time,
such that for all words w: w € A iff f(w) € B

» A <, B implies that A is “at most as difficult” as B
» polynomial reductions are transitive

» NP-hard problems B: A <, B for all A€ NP

» NP-complete problems B: B € NP and B is NP-hard

Gabriele Roger (University of Basel) Theory of Computer Science April 29, 2019 29 /29

	P and NP
	Polynomial Reductions
	NP-Hardness and NP-Completeness
	Summary

