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Reminder: Special Halting Problem

Definition (Special Halting Problem)

Summar

The special halting problem or self-application problem
is the language

K ={w € {0,1}* | M,, started on w terminates}.

German: spezielles Halteproblem, Selbstanwendbarkeitsproblem
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General Halting Problem (1)

Definition (General Halting Problem)

The general halting problem or halting problem is the language

H = {w#x € {0,1,#}" | w,x € {0,1}",

M,, started on x terminates}

German: allgemeines Halteproblem, Halteproblem
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Summar

General Halting Problem (1)

Definition (General Halting Problem)

The general halting problem or halting problem is the language

H = {w#x € {0,1,#}" | w,x € {0,1}",

M,, started on x terminates}

German: allgemeines Halteproblem, Halteproblem

Note: H is semi-decidable. (Why?)
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General Halting Problem (1)

Definition (General Halting Problem)

The general halting problem or halting problem is the language

H = {w#x € {0,1,#}" | w,x € {0,1}",

M,, started on x terminates}

German: allgemeines Halteproblem, Halteproblem

Note: H is semi-decidable. (Why?)

Theorem (Undecidability of General Halting Problem)

The general halting problem is undecidable.

Intuition: if the special case K is not decidable,
then the more general problem H definitely cannot be decidable.



Summary
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General Halting Problem (2)

Proof.

We show K < H.

We define f : {0,1}* — {0, 1, #}* as f(w) := wiw.
f is clearly total and computable, and

we K
iff M,, started on w terminates
iff w#tw € H
iff f(w) € H.
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General Halting Problem (2)

Proof.
We show K < H.
We define f : {0,1}* — {0, 1, #}* as f(w) := wiw.

f is clearly total and computable, and

we K
iff M,, started on w terminates
iff w#tw € H
iff f(w) € H.

Therefore f is a reduction from K to H.
Because K is undecidable, H is also undecidable. ]
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Halting Problem on Empty Tape (1)

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

Ho = {w € {0,1}" | M,, started on ¢ terminates}.

German: Halteproblem auf leerem Band
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Halting Problem on Empty Tape (1)

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

Ho = {w € {0,1}" | M,, started on ¢ terminates}.

German: Halteproblem auf leerem Band

Note: Hp is semi-decidable. (\Why?)
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Halting Problem on Empty Tape

Definition (Halting Problem on the Empty Tape)

Summar

The halting problem on the empty tape is the language

Ho = {w € {0,1}" | M,, started on ¢ terminates}.

German: Halteproblem auf leerem Band

Note: Hp is semi-decidable. (\Why?)

Theorem (Undecidability of Halting Problem on Empty Tape)
The halting problem on the empty tape is undecidable.
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Halting Problem on Empty Tape (2)

We show H < Hj.
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Halting Problem on Empty Tape

Proof.

We show H < Hj.

Consider the function f : {0, 1,#}* — {0,1}*

that computes the word f(z) for a given z € {0, 1, #}* as follows:
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Halting Problem on Empty Tape

Proof.
We show H < Hj.

Consider the function f : {0, 1,#}* — {0,1}*
that computes the word f(z) for a given z € {0, 1, #}* as follows:

m Test if z has the form w#x with w,x € {0, 1}*.

m If not, return any word that is not in Hy
(e.g., encoding of a TM that instantly starts an endless loop).

m If yes, split z into w and x.
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Halting Problem on Empty Tape (2)

Proof.

We show H < Hj.

Consider the function f : {0, 1,#}* — {0,1}*

that computes the word f(z) for a given z € {0, 1, #}* as follows:
m Test if z has the form w#x with w,x € {0, 1}*.

m If not, return any word that is not in Hy
(e.g., encoding of a TM that instantly starts an endless loop).

m If yes, split z into w and x.
m Decode w toa TM M.
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Halting Problem on Empty Tape (3)

Proof (continued).

m Construct a TM M;j that behaves as follows:
m If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x # ¢); then stop
m otherwise, stop immediately
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Halting Problem on Empty Tape (3)

Proof (continued).

m Construct a TM Mj that behaves as follows:

m If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x # ¢); then stop
m otherwise, stop immediately

m Construct TM M that first runs M; and then M>.
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Halting Problem on Empty Tape (3)

Proof (continued).

m Construct a TM Mj that behaves as follows:

m If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x # ¢); then stop
m otherwise, stop immediately

m Construct TM M that first runs M; and then M>.
m Return the encoding of M.
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Halting Problem on Empty Tape (3)

Proof (continued).

m Construct a TM Mj that behaves as follows:

m If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x # ¢); then stop
m otherwise, stop immediately

m Construct TM M that first runs M; and then M>.
m Return the encoding of M.

f is total and (with some effort) computable. Also:

z € H iff z = w#x and M,, run on x terminates
iff Mg () started on empty tape terminates
iff £(z) € Ho

~» H < Hp ~~ Hp undecidable ]
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Rice's Theorem (1)

>roblem Variants Rice’s Theorem Summary
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We have shown that a number of (related) problems
are undecidable:

m special halting problem K
m general halting problem H
m halting problem on empty tape Hyp

Many more results of this type could be shown.

Instead, we prove a much more general result,
Rice's theorem, which shows that a very large class
of different problems are undecidable.

Rice's theorem can be summarized informally as:
every non-trivial question about what a given Turing machine
computes is undecidable.
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Rice's Theorem (2)
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Theorem (Rice's Theorem)

Let R be the class of all computable functions.
Let S be an arbitrary subset of R except S =) or S = R.
Then the language

C(S) = {w € {0, 1}" | the function computed by M,, is in S}

is undecidable.

German: Satz von Rice

Question: why the restriction to S # () and S # R?

Extension (without proof): in most cases neither C(S) nor C(S) is
semi-decidable. (But there are sets S for which one of the two
languages is semi-decidable.)
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Rice's Theorem (3)

Let © be the function that is undefined everywhere.
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Rice's Theorem (3)

Proof.
Let © be the function that is undefined everywhere.

Case distinction:

Case 1: QeS8
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Rice's Theorem (3)

Proof.
Let © be the function that is undefined everywhere.

Case distinction:

Case 1: QeS8

Let g € R\ S be an arbitrary computable function
outside of S (exists because S C R and S # R).
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Rice's Theorem (3)

Proof.
Let © be the function that is undefined everywhere.

Case distinction:

Case 1: QeS8

Let g € R\ S be an arbitrary computable function
outside of S (exists because S C R and S # R).

Let @ be a Turing machine that computes q.
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Rice's Theorem (4)

Proof (continued).

We show that Hy < C(S).
Consider function f : {0,1}* — {0,1}*,
where f(w) is defined as follows:
m Construct TM M that first behaves on input y like M,
on the empty tape (independently of what y is).

m Afterwards (if that computation terminates!)
M clears the tape, creates the start configuration of @
for input y and then simulates Q.

m f(w) is the encoding of this TM M
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Rice's Theorem (4)

Proof (continued).

We show that Hy < C(S).
Consider function f : {0,1}* — {0,1}*,
where f(w) is defined as follows:
m Construct TM M that first behaves on input y like M,
on the empty tape (independently of what y is).
m Afterwards (if that computation terminates!)
M clears the tape, creates the start configuration of @
for input y and then simulates Q.
m f(w) is the encoding of this TM M

f is total and computable.
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Rice's Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by f(w)?
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Rice's Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by f(w)?

Q if M,, does not terminate on ¢
Mg (w) computes )
g otherwise
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Rice's Theorem (5)

Proof (continued).
Which function is computed by the TM encoded by f(w)?

Q if M,, does not terminate on ¢
Mg (w) computes )
g otherwise

For all words w € {0, 1}*:

w € Hy =— M,, terminates on &
= Mg (,) computes the function q
= the function computed by M¢(, is not in §
— f(w) ¢ C(S)
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Rice’s Theorem (6)

Proof (continued).

Further:

w ¢ Hy = M,, does not terminate on &
= Mg () computes the function £
= the function computed by M, isin S
— f(w) € C(S)
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Rice's Theorem (6)

Proof (continued).

Further:

w ¢ Hy = M,, does not terminate on &
= Mg () computes the function £
= the function computed by M, isin S
— f(w) € C(S)

Together this means: w ¢ Hp iff f(w) € C(S),
thus w € Hy iff f(w) € C(S).
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Rice's Theorem (6)

Proof (continued).

Further:

w ¢ Hy = M,, does not terminate on &
= Mg () computes the function £
= the function computed by M, isin S
— f(w) € C(S)

Together this means: w ¢ Hp iff f(w) € C(S),
thus w € Hy iff f(w) € C(S).

Therefore, f is a reduction of Hy to C(S).
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Rice's Theorem (6)

Proof (continued).

Further:

w ¢ Hy = M,, does not terminate on &
= Mg () computes the function £
= the function computed by M, isin S
— f(w) € C(S)

Together this means: w ¢ Hp iff f(w) € C(S),
thus w € Hy iff f(w) € C(S).

Therefore, f is a reduction of Hy to C(S).

Since Hp is undecidable, Hp is also undecidable.
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Rice's Theorem (6)

Proof (continued).

Further:

w ¢ Hy = M,, does not terminate on &
= Mg () computes the function £
= the function computed by M, isin S
— f(w) € C(S)

Together this means: w ¢ Hp iff f(w) € C(S),
thus w € Hy iff f(w) € C(S).

Therefore, f is a reduction of Hy to C(S).
Since Hp is undecidable, Hp is also undecidable.

We can conclude that C(S) is undecidable.

Summary
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Rice's Theorem (7)

Proof (continued).

Case2: Q¢S

Analogous to Case 1 but this time choose g € S.

The corresponding function f then reduces Hy to C(S).

Thus, it also follows in this case that C(S) is undecidable.

Summar

Ol
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Rice's Theorem: Consequences

Was it worth it?
We can now conclude immediately that (for example)
the following informally specified problems are all undecidable:

m Does a given TM compute a constant function?

m Does a given TM compute a total function
(i.e. will it always terminate, and in particular terminate
in a “correct” configuration)?

Is the output of a given TM always longer than its input?
Does a given TM compute the identity function?
Does a given TM compute the computable function 77
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Rice's Theorem: Examples

m Does a given TM compute a constant function?
S = {f | f is total and computable and
for all x, y in the domain of f: f(x) = f(y)}

m Does a given TM compute a total function?
S = {f | f is total and computable}

m Does a given TM compute the identity function?
S ={f ]| f(x) = x for all x}

m Does a given TM add two natural numbers?
S={f:N2 = No|f(x,y)=x+y}

m Does a given TM compute the computable function 7
S ={f}

(full automization of software verification is impossible)

Summar
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Rice's Theorem: Pitfalls

m S = {f | f can be computed by a DTM
with an even number of states}
Rice’s theorem not applicable because S = R
m S={f:{0,1}* =, {0,1} | f(w) =1 iff
M,, does not terminate on €}?
Rice's theorem not applicable because S £ R

m Show that {w | M,, traverses all states on every input}
is undecidable.
Rice's theorem not directly applicable because not a semantic
property (the function computed by M,, can also be
computed by a TM that does not traverse all states)
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Rice's Theorem: Practical Applications

Undecidable due to Rice's theorem + a small reduction:
m automated debugging:
m Can a given variable ever receive a null value?
m Can a given assertion in a program ever trigger?
m Can a given buffer ever overflow?
m virus scanners and other software security analysis:
m Can this code do something harmful?
m Is this program vulnerable to SQL injections?
m Can this program lead to a privilege escalation?
m optimizing compilers:
m Is this dead code?
m |s this a constant expression?
m Can pointer aliasing happen here?
m Is it safe to parallelize this code path?
m parallel program analysis:
m Is a deadlock possible here?
m Can a race condition happen here?
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Summary
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Summary

undecidable but semi-decidable problems:

m special halting problem a.k.a. self-application problem
(from previous chapter)

m general halting problem

m halting problem on empty tape

Rice's theorem:

m "“In general one cannot determine algorithmically
what a given program (or Turing machine) computes.”
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What's Next?

contents of this course:

A. background v/
> mathematical foundations and proof techniques
B. logic v/
> How can knowledge be represented?
How can reasoning be automated?
C. automata theory and formal languages v/
> What is a computation?
D. Turing computability
> What can be computed at all?
E. complexity theory
> What can be computed efficiently?

F. more computability theory
> Other models of computability



contents of this course:

A.

background v
> mathematical foundations and proof techniques
logic v
> How can knowledge be represented?
How can reasoning be automated?
automata theory and formal languages v
> What is a computation?

. Turing computability v/

> What can be computed at all?

. complexity theory

> What can be computed efficiently?

more computability theory
> Other models of computability
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