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Undecidable Problems

m We now know many characterizations
of semi-decidability and decidability.

m What's missing is a concrete example
for an undecidable (= not decidable) problem.

m Do undecidable problems even exist?
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We now know many characterizations

of semi-decidability and decidability.

What's missing is a concrete example

for an undecidable (= not decidable) problem.
Do undecidable problems even exist?

Yes! Counting argument: there are (for a fixed ¥)
as many decision algorithms (e. g., Turing machines) as
numbers in Ny but as many languages as numbers in R.

Since Ny cannot be surjectively mapped to R,
languages with no decision algorithm exist.

But this argument does not give us a concrete undecidable
problem. ~~ main goal of this chapter
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Turing Machines as Words
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Turing Machines as Inputs

m The first undecidable problems that we will get to know
have Turing machines as their input.

~~ “programs that have programs as input”:

cf. compilers, interpreters, virtual machines, etc.
m We have to think about how we can encode

arbitrary Turing machines as words over a fixed alphabet.
m We use the binary alphabet ¥ = {0, 1}.

m As an intermediate step we first encode over the alphabet
Y ={0,1,#}.
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Encodlng a Turing Machine as a Word (1)

Step 1: encode a Turing machine as a word over {0, 1, #}
Reminder: Turing machine M = (Q, %, T, 0, qo, 1, E)
Idea:

input alphabet ¥ should always be {0,1}

m enumerate states in @ and symbols in [’
and consider them as numbers 0,1,2, ...

blank symbol always receives number 2

start state always receives number 0
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Encodlng a Turing Machine as a Word (1)

Step 1: encode a Turing machine as a word over {0, 1, #}
Reminder: Turing machine M = (Q, %, T, 0, qo, 1, E)
ldea:

input alphabet ¥ should always be {0,1}

m enumerate states in @ and symbols in [’
and consider them as numbers 0,1,2, ...

blank symbol always receives number 2

m start state always receives number 0

Then it is sufficient to only encode § explicitly:
m @: all states mentioned in the encoding of ¢
m E: all states that never occur on a left-hand side of a d-rule
m [ ={0,1,00,a3,a4,...,ax}, where k is the largest symbol
number mentioned in the J-rules
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Encodlng a Turing Machine as a Word (2)

encode the rules:

m Let 9(q;,a;) = (gir,ay, D) be a rulein §,
where the indices i, i/, j, j/ correspond to the enumeration of
states/symbols and D € {L,R,N}.

m encode this rule as

Wi ji'j',D = ##bm( )#bm( )#bm( )#bm( )#bm(m)v

0 fD=L
where m=<1 ifD=R
2 ifD=N

m For every rule in §, we obtain one such word.

m All of these words in sequence (in arbitrary order)
encode the Turing machine.
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Encoding a Turing Machine as a Word (3)

Step 2: transform into word over {0, 1} with mapping

0+ 00
1—01
#— 11

Turing machine can be reconstructed from its encoding.
How?
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Encodlng a Turing Machine as a Word (4)

Example (step 1)

d(qg2, a3) = (qo, a2, N) becomes ##10#11#0#10#10
0(q1,a1) = (g3, a0, L) becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10## 1 #1#11#0#0
111101001101011100110100110100111101110111010111001100
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Encodlng a Turing Machine as a Word (4)

Example (step 1)

d(qg2, a3) = (qo, a2, N) becomes ##10#11#0#10#10
0(q1,a1) = (g3, a0, L) becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10## 1 #1#11#0#0
111101001101011100110100110100111101110111010111001100
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Encodmg a Turing Machine as a Word (4)

Example (step 1)

d(qg2, a3) = (qo, a2, N) becomes ##10#11#0#10#10
0(q1,a1) = (g3, a0, L) becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10## 1 #1#11#0#0
111101001101011100110100110100111101110111010111001100

Note: We can also consider the encoded word
(uniquely; why?) as a number that enumerates this TM.

This is not important for the halting problem but in other contexts
where we operate on numbers instead of words.
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Turlng Machine Encoded by a Word

goal: function that maps any word in {0,1}* to a Turing machine

problem: not all words in {0,1}* are encodings of a Turing machine

solution: Let M be an arbitrary fixed deterministic Turing machine
(for example one that always immediately stops). Then:

Definition (Turing Machine Encoded by a Word)

For all w € {0, 1}*:

M. — M’ if w is the encoding of some DTM M’
Y I M otherwise
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Special Halting Problem

Our preparations are now done and we can define:

Definition (Special Halting Problem)

The special halting problem or self-application problem
is the language

K ={w € {0,1}* | M,, started on w terminates}.

German: spezielles Halteproblem, Selbstanwendbarkeitsproblem

Note: word w plays two roles as encoding of the TM
and as input for encoded machine
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Seml DeC|dab|I|ty of the Special Haltmg Problem

Theorem (Semi-Decidability of the Special Halting Problem)

The special halting problem is semi-decidable.

Proof

We construct an “interpreter” for DTMs
that receives the encoding of a DTM as input w
and simulates its computation on input w.

If the simulated DTM stops, the interpreter returns 1.
Otherwise it does not return.

This interpreter computes X' . O

Note: TMs simulating arbitrary TMs are called universal TMs.

German: universelle Turingmaschine
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Undecidability of the Special Halting Problem (1)

Theorem (Undecidability of the Special Halting Problem)

The special halting problem is undecidable.




Ilm duction s Special Halting Problem
s 5 00000

UndeC|dab|I|ty of the Special Haltlng Problem ( )

Theorem (Undecidability of the Special Halting Problem)

The special halting problem is undecidable.

Proof
Proof by contradiction: we assume that the special halting problem
K were decidable and derive a contradiction.
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UndeC|dab|I|ty of the Special Haltlng Problem ( )

Theorem (Undecidability of the Special Halting Problem)

The special halting problem is undecidable.

Proof
Proof by contradiction: we assume that the special halting problem
K were decidable and derive a contradiction.

So assume K is decidable. Then yk is computable (why?).
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UndeC|dab|I|ty of the Special Haltlng Problem ( )

Theorem (Undecidability of the Special Halting Problem)
The special halting problem is undecidable.

Proof

Proof by contradiction: we assume that the special halting problem
K were decidable and derive a contradiction.

So assume K is decidable. Then xk is computable (why?).

Let M be a Turing machine that computes xk, i.e.,

given a word w writes 1 or O onto the tape
(depending on whether w € K) and then stops.
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Undecidability of the Special Halting Problem (2)

Proof (continued).

Construct a new machine M’ as follows:

0 Languages

© Execute M on the input w.
@ If the tape content is O: stop.

© Otherwise: enter an endless loop.
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UndeC|dab|I|ty of the Special Haltlng Problem ( )

Proof (continued).

Construct a new machine M’ as follows:

© Execute M on the input w.
@ If the tape content is O: stop.

© Otherwise: enter an endless loop.

Let w’ be the encoding of M’. How will M" behave on input w'?
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UndeC|dab|I|ty of the Special Haltlng Problem ( )

Proof (continued).

Construct a new machine M’ as follows:

© Execute M on the input w.
@ If the tape content is O: stop.

© Otherwise: enter an endless loop.
Let w’ be the encoding of M’. How will M" behave on input w'?

M’ run on w’ stops
iff M run on w' outputs 0
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UndeC|dab|I|ty of the Special Haltlng Problem ( )

Proof (continued).

Construct a new machine M’ as follows:
© Execute M on the input w.
@ If the tape content is O: stop.

© Otherwise: enter an endless loop.
Let w’ be the encoding of M’. How will M" behave on input w'?

M’ run on w’ stops
iff M run on w' outputs 0

iff xk(w') =0
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UndeC|dab|I|ty of the Special Haltlng Problem ( )

Proof (continued).

Construct a new machine M’ as follows:

© Execute M on the input w.
@ If the tape content is O: stop.

© Otherwise: enter an endless loop.
Let w’ be the encoding of M’. How will M" behave on input w'?

M’ run on w’ stops

iff M run on w' outputs 0
iff xk(w') =0

iffw' ¢ K
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UndeC|dab|I|ty of the Special Haltlng Problem ( )

Proof (continued).

Construct a new machine M’ as follows:

© Execute M on the input w.
@ If the tape content is O: stop.

© Otherwise: enter an endless loop.
Let w’ be the encoding of M’. How will M" behave on input w'?

M’ run on w’ stops

iff M run on w' outputs 0

iff xk(w') =0

iffw' ¢ K

iff M,,» run on w’ does not stop




I|m bduction \ Nords Special Halting Problem Ty p# 0 Languages

0000e0

UndeC|dab|I|ty of the Special Haltlng Problem ( )

Proof (continued).

Construct a new machine M’ as follows:

© Execute M on the input w.
@ If the tape content is O: stop.

© Otherwise: enter an endless loop.
Let w’ be the encoding of M’. How will M’ behave on input w’'?

M’ run on w’ stops

iff M run on w' outputs 0

iff xk(w') =0

iffw' ¢ K

iff M,,» run on w’ does not stop
iff M run on w’ does not stop

Contradiction! This proves the theorem. [
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Reprise: Type-0 Languages
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Back to Chapter C8: Closure Properties

Intersection Union Complement Product Star

Type 2 No Yes No Yes Yes
Type 0 Yes(?) Yes(1) No(3) Yes()  Yes()
Proofs?

(1) proof via grammars, similar to context-free cases
(2) without proof
(3) proof in later chapters (part D)



Back to Chapter C8: Decidability

Word Emptiness  Equivalence Intersection
problem problem problem problem
Type 2 Yes Yes No No
Type 0 No(#) No(#) No(4) No(#)

Proofs?

(1) same argument we used for context-free languages

(2) because already undecidable for context-free languages
(3) without proof

(4) proofs in later chapters (part D)
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Answers to Old Questions

Closure properties:
m K is semi-decidable (and thus type 0) but not decidable.
~ K is not semi-decidable, thus not type 0.

~ Type-0 languages are not closed under complement.

Decidability:
m K is type 0 but not decidable.
~ word problem for type-0 languages not decidable

~ emptiness, equivalence, intersection problem: later in exercises
(We are still missing some important results for this.)
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Overview: Computability Theory

Turing-Computability |

| (Semi-)Decidability |

—I Halting Problem |

—| Rice's Theorem |

—| Other Problems |
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What We Achieved So Far: Discussion

m We now know a concrete undecidable problem.
m But the problem is rather artificial:
how often do we want to apply a program to itself?
m We will see that we can derive further (more useful)
undecidability results from the undecidability
of the special halting problem.

m The central notion for this is reducing
a new problem to an already known problem.
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Reductions: Definition

Definition (Reduction)

Let AC X* and B C I'* be languages, and let f : * — *
be a total and computable function such that for all x € ¥*:

x €A ifandonlyif f(x)e B.

Then we say that A can be reduced to B (in symbols: A < B),
and f is called reduction from A to B.

Summar

German: A ist auf B reduzierbar, Reduktion von A auf B
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Reduction Property

Theorem (Reductions vs. Semi-Decidability/Decidability)
Let A and B be languages with A < B. Then:
© If B is decidable, then A is decidable.

@ If B is semi-decidable, then A is semi-decidable.
© If A is not decidable, then B is not decidable.
@ If A is not semi-decidable, then B is not semi-decidable.

~> In the following, we use 3. to show undecidability
for further problems.
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Reduction Property: Proof

Proof.
for 1.: The following algorithm computes xa(x) given input x:
y = f(x)

result := xg(y)
RETURN result
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Reduction Property: Proof

Proof.
for 1.: The following algorithm computes xa(x) given input x:
y = f(x)

result :== xg(y)
RETURN result

for 2.: identical to (1), but use x5 (instead of xg)
to compute x4 (instead of xa)
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Reduction Property: Proof

Proof.
for 1.: The following algorithm computes xa(x) given input x:
y = f(x)

result := xg(y)
RETURN result

for 2.: identical to (1), but use x5 (instead of xg)
to compute x4 (instead of xa)

for 3./4.: contrapositions of 1./2. ~~ logically equivalent O]
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Reductions are Preorders

Theorem (Reductions are Preorders)

The relation “<" is a preorder:

© For all languages A:
A < A (reflexivity)

@ For all languages A, B, C:
If A< B and B < C, then A < C (transitivity)

v

German: schwache Halbordnung/Quasiordnung, Reflexivitat, Transitivitit
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Reductions are Preorders: Proof

for 1.: The function f(x) = x is a reduction from A to A
because it is total and computable and x € A iff f(x) € A.

for 2.: ~~ exercises ]
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Summary

m The special halting problem (self-application problem)
is undecidable.

m However, it is semi-decidable.

® important concept in this chapter:
Turing machines represented as words
~» Turing machines taking Turing machines as their input

m reductions: “embedding” a problem as a special case
of another problem

m important method for proving undecidability:
reduce from a known undecidable problem to a new problem
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