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Gabriele Röger (University of Basel) Theory of Computer Science April 15, 2019 3 / 31



D3. Halting Problem and Reductions Introduction

Overview: Computability Theory

Computability

Turing-Computability

Undecidable
Problems

(Semi-)Decidability

Halting Problem

Reductions

Rice’s Theorem

Other Problems
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D3. Halting Problem and Reductions Introduction

Undecidable Problems

I We now know many characterizations
of semi-decidability and decidability.

I What’s missing is a concrete example
for an undecidable (= not decidable) problem.

I Do undecidable problems even exist?

I Yes! Counting argument: there are (for a fixed Σ)
as many decision algorithms (e. g., Turing machines) as
numbers in N0 but as many languages as numbers in R.

Since N0 cannot be surjectively mapped to R,
languages with no decision algorithm exist.

I But this argument does not give us a concrete undecidable
problem.  main goal of this chapter
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D3. Halting Problem and Reductions Turing Machines as Words

Turing Machines as Inputs

I The first undecidable problems that we will get to know
have Turing machines as their input.

 “programs that have programs as input”:
cf. compilers, interpreters, virtual machines, etc.

I We have to think about how we can encode
arbitrary Turing machines as words over a fixed alphabet.

I We use the binary alphabet Σ = {0, 1}.
I As an intermediate step we first encode over the alphabet

Σ′ = {0, 1, #}.
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D3. Halting Problem and Reductions Turing Machines as Words

Encoding a Turing Machine as a Word (1)

Step 1: encode a Turing machine as a word over {0, 1, #}
Reminder: Turing machine M = 〈Q,Σ, Γ, δ, q0,�,E 〉
Idea:

I input alphabet Σ should always be {0, 1}
I enumerate states in Q and symbols in Γ

and consider them as numbers 0, 1, 2, . . .

I blank symbol always receives number 2

I start state always receives number 0

Then it is sufficient to only encode δ explicitly:

I Q: all states mentioned in the encoding of δ

I E : all states that never occur on a left-hand side of a δ-rule

I Γ = {0, 1,�, a3, a4, . . . , ak}, where k is the largest symbol
number mentioned in the δ-rules
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D3. Halting Problem and Reductions Turing Machines as Words

Encoding a Turing Machine as a Word (2)

encode the rules:

I Let δ(qi , aj) = 〈qi ′ , aj ′ ,D〉 be a rule in δ,
where the indices i , i ′, j , j ′ correspond to the enumeration of
states/symbols and D ∈ {L,R,N}.

I encode this rule as
wi ,j ,i ′,j ′,D = ##bin(i)#bin(j)#bin(i ′)#bin(j ′)#bin(m),

where m =


0 if D = L

1 if D = R

2 if D = N

I For every rule in δ, we obtain one such word.

I All of these words in sequence (in arbitrary order)
encode the Turing machine.
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D3. Halting Problem and Reductions Turing Machines as Words

Encoding a Turing Machine as a Word (3)

Step 2: transform into word over {0, 1} with mapping

0 7→ 00

1 7→ 01

# 7→ 11

Turing machine can be reconstructed from its encoding.
How?
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D3. Halting Problem and Reductions Turing Machines as Words

Encoding a Turing Machine as a Word (4)

Example (step 1)

δ(q2, a3) = 〈q0, a2,N〉 becomes ##10#11#0#10#10

δ(q1, a1) = 〈q3, a0, L〉 becomes ##1#1#11#0#0

Example (step 2)

##10#11#0#10#10##1#1#11#0#0

111101001101011100110100110100111101110111010111001100

Note: We can also consider the encoded word
(uniquely; why?) as a number that enumerates this TM.

This is not important for the halting problem but in other contexts
where we operate on numbers instead of words.
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D3. Halting Problem and Reductions Turing Machines as Words

Turing Machine Encoded by a Word

goal: function that maps any word in {0, 1}∗ to a Turing machine

problem: not all words in {0, 1}∗ are encodings of a Turing machine

solution: Let M̂ be an arbitrary fixed deterministic Turing machine
(for example one that always immediately stops). Then:

Definition (Turing Machine Encoded by a Word)

For all w ∈ {0, 1}∗:

Mw =

{
M ′ if w is the encoding of some DTM M ′

M̂ otherwise
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D3. Halting Problem and Reductions Special Halting Problem

Special Halting Problem

Our preparations are now done and we can define:

Definition (Special Halting Problem)

The special halting problem or self-application problem
is the language

K = {w ∈ {0, 1}∗ | Mw started on w terminates}.

German: spezielles Halteproblem, Selbstanwendbarkeitsproblem

Note: word w plays two roles as encoding of the TM

Note:

and as input for encoded machine
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D3. Halting Problem and Reductions Special Halting Problem

Semi-Decidability of the Special Halting Problem

Theorem (Semi-Decidability of the Special Halting Problem)

The special halting problem is semi-decidable.

Proof.
We construct an “interpreter” for DTMs
that receives the encoding of a DTM as input w
and simulates its computation on input w .

If the simulated DTM stops, the interpreter returns 1.
Otherwise it does not return.

This interpreter computes χ′K .

Note: TMs simulating arbitrary TMs are called universal TMs.

German: universelle Turingmaschine
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D3. Halting Problem and Reductions Special Halting Problem

Undecidability of the Special Halting Problem (1)

Theorem (Undecidability of the Special Halting Problem)

The special halting problem is undecidable.

Proof.
Proof by contradiction: we assume that the special halting problem
K were decidable and derive a contradiction.

So assume K is decidable. Then χK is computable (why?).

Let M be a Turing machine that computes χK , i. e.,
given a word w writes 1 or 0 onto the tape
(depending on whether w ∈ K ) and then stops. . . .
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D3. Halting Problem and Reductions Special Halting Problem

Undecidability of the Special Halting Problem (2)

Proof (continued).

Construct a new machine M ′ as follows:

1 Execute M on the input w .

2 If the tape content is 0: stop.

3 Otherwise: enter an endless loop.

Let w ′ be the encoding of M ′. How will M ′ behave on input w ′?

M ′ run on w ′ stops
iff M run on w ′ outputs 0

iff χK (w ′) = 0
iff w ′ /∈ K
iff Mw ′ run on w ′ does not stop
iff M ′ run on w ′ does not stop

Contradiction! This proves the theorem.
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D3. Halting Problem and Reductions Reprise: Type-0 Languages

Back to Chapter C8: Closure Properties

Intersection Union Complement Product Star

Type 3 Yes Yes Yes Yes Yes

Type 2 No Yes No Yes Yes

Type 1 Yes(2) Yes(1) Yes(2) Yes(1) Yes(1)

Type 0 Yes(2) Yes(1) No(3) Yes(1) Yes(1)

Proofs?
(1) proof via grammars, similar to context-free cases
(2) without proof
(3) proof in later chapters (part D)
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D3. Halting Problem and Reductions Reprise: Type-0 Languages

Back to Chapter C8: Decidability

Word
problem

Emptiness
problem

Equivalence
problem

Intersection
problem

Type 3 Yes Yes Yes Yes

Type 2 Yes Yes No No

Type 1 Yes(1) No(3) No(2) No(2)

Type 0 No(4) No(4) No(4) No(4)

Proofs?
(1) same argument we used for context-free languages
(2) because already undecidable for context-free languages
(3) without proof
(4) proofs in later chapters (part D)
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D3. Halting Problem and Reductions Reprise: Type-0 Languages

Answers to Old Questions

Closure properties:

I K is semi-decidable (and thus type 0) but not decidable.

 K̄ is not semi-decidable, thus not type 0.

 Type-0 languages are not closed under complement.

Decidability:

I K is type 0 but not decidable.

 word problem for type-0 languages not decidable

 emptiness, equivalence, intersection problem: later in exercises
(We are still missing some important results for this.)
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D3. Halting Problem and Reductions Reductions
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D3. Halting Problem and Reductions Reductions

What We Achieved So Far: Discussion

I We now know a concrete undecidable problem.

I But the problem is rather artificial:
how often do we want to apply a program to itself?

I We will see that we can derive further (more useful)
undecidability results from the undecidability
of the special halting problem.

I The central notion for this is reducing
a new problem to an already known problem.
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D3. Halting Problem and Reductions Reductions

Reductions: Definition

Definition (Reduction)

Let A ⊆ Σ∗ and B ⊆ Γ∗ be languages, and let f : Σ∗ → Γ∗

be a total and computable function such that for all x ∈ Σ∗:

x ∈ A if and only if f (x) ∈ B.

Then we say that A can be reduced to B (in symbols: A ≤ B),
and f is called reduction from A to B.

German: A ist auf B reduzierbar, Reduktion von A auf B
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D3. Halting Problem and Reductions Reductions

Reduction Property

Theorem (Reductions vs. Semi-Decidability/Decidability)

Let A and B be languages with A ≤ B. Then:

1 If B is decidable, then A is decidable.

2 If B is semi-decidable, then A is semi-decidable.

3 If A is not decidable, then B is not decidable.

4 If A is not semi-decidable, then B is not semi-decidable.

 In the following, we use 3. to show undecidability

 

for further problems.

Gabriele Röger (University of Basel) Theory of Computer Science April 15, 2019 26 / 31



D3. Halting Problem and Reductions Reductions

Reduction Property: Proof

Proof.

for 1.: The following algorithm computes χA(x) given input x :

y := f (x)
result := χB(y)
RETURN result

for 2.: identical to (1), but use χ′B (instead of χB)
to compute χ′A (instead of χA)

for 3./4.: contrapositions of 1./2.  logically equivalent
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D3. Halting Problem and Reductions Reductions

Reductions are Preorders

Theorem (Reductions are Preorders)

The relation “≤” is a preorder:

1 For all languages A:
A ≤ A (reflexivity)

2 For all languages A, B, C:
If A ≤ B and B ≤ C, then A ≤ C (transitivity)

German: schwache Halbordnung/Quasiordnung, Reflexivität, Transitivität
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D3. Halting Problem and Reductions Reductions

Reductions are Preorders: Proof

Proof.

for 1.: The function f (x) = x is a reduction from A to A
because it is total and computable and x ∈ A iff f (x) ∈ A.

for 2.:  exercises
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D3.6 Summary
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D3. Halting Problem and Reductions Summary

Summary

I The special halting problem (self-application problem)
is undecidable.

I However, it is semi-decidable.

I important concept in this chapter:
Turing machines represented as words
 Turing machines taking Turing machines as their input

I reductions: “embedding” a problem as a special case
of another problem

I important method for proving undecidability:
reduce from a known undecidable problem to a new problem
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