Theory of Computer Science
D2. Recursive Enumerability and Decidability

Gabriele Roger

University of Basel

April 10, 2019

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 1/32

Theory of Computer Science
April 10, 2019 — D2. Recursive Enumerability and Decidability

D2.1 Introduction

D2.2 Encoding/Decoding Functions
D2.3 Recursive Enumerability

D2.4 Semi-Decidability

D2.5 Decidability

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 2 /32

Overview: Computability Theory

Turing-Computability |

(Semi-)Decidability |

Undecidable

Problems Halting Problem |

Reductions |

Rice's Theorem |

L T 1

Other Problems |

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 3 /32

Overview: Computability Theory

Turing-Computability |

Halting Problem |

Reductions |

Rice's Theorem |

A I I I

Other Problems |

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 4 /32




D2. Recursive Enumerability and Decidability Introduction

D2.1 Introduction

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 5 /32

D2. Recursive Enumerability and Decidability Introduction

Guiding Question

Guiding question for next chapters:

Which kinds of problems cannot be
solved by a computer?

D2. Recursive Enumerability and Decidability Introduction

Computable Functions

For a higher level of abstraction, we consider the Church-Turing
thesis to be correct (we will further back this up in part F).

> Instead of saying Turing-computable, we just say computable.
> Instead of presenting TMs we use pseudo-code.

> Instead of only considering computable functions
over words (£* —, £*) or numbers (N& —, Np),
we permit arbitrary domains and codomains
(e.g., ¥* —5 {0,1}, Ng — X¥), ignoring details of encoding.

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 7/ 32

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 6 /32
D2. Recursive Enumerability and Decidability Introduction
Computability vs. Decidability
> last chapter: computability of functions
» now: analogous concept for languages
Why languages?
» Only yes/no questions (“Is w € L?")
instead of general function computation (“What is f(w)?")
makes it easier to investigate questions.
» Results are directly transferable to the more general problem
of computing arbitrary functions. (~ “playing 20 questions”)
Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 8 /32




D2. Recursive Enumerability and Decidability

How do we proceed?

> We first get to know computable functions for encoding pairs
of numbers as numbers (later used for dovetailing).
» Then we consider two new concepts
> recursive enumerability and
» semi-decidability
and relate them to each other and earlier concepts.

> Afterwards, we require termination of algorithms
~~ decidability

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019

Introduction

/ 32

D2. Recursive Enumerability and Decidability Encoding/Decoding Functions

D2.2 Encoding/Decoding Functions

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 10 / 32

D2. Recursive Enumerability and Decidability

Encoding and Decoding: Binary Encode

Consider the function encode : Ng — Ng with:

1
Xy )-i—x

encode(x,y) := < )

> encode is known as the Cantor pairing function
(German: Cantorsche Paarungsfunktion)

> encode is computable

> encode is bijective

‘x:O x=1 x=2 x=3 x=4
y=0 0 2 5 9 14
y=1 1 4 8 13 19
y=2 3 7 12 18 25
y=3 6 11 17 24 32
y=4 10 16 23 31 40

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019

11/

Encoding/Decoding Functions

D2. Recursive Enumerability and Decidability Encoding/Decoding Functions

Encoding and Decoding: Binary Decode

Consider the inverse functions
decode; : Ng — Ny and decode, : Ng — Ny of encode:

decode; (encode(x, y)) =
decodey(encode(x, y))

» decode; and decode, are computable

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 12 / 32




D2. Recursive Enumerability and Decidability Recursive Enumerability

D2.3 Recursive Enumerability

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 13 / 32

D2. Recursive Enumerability and Decidability Recursive Enumerability

Recursive Enumerability: Definition

Definition (Recursively Enumerable)

A language L C ¥* is called recursively enumerable

if L = () or if there is a total and computable function
f :Ng — £* such that

L={f(0),f(1),f(2)...}.

We then say that f (recursively) enumerates L.

Note: f does not have to be injective!

German: rekursiv aufzéhlbar, f zdhlt L (rekursiv) auf
~- do not confuse with “abzihlbar" (countable)

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 14 / 32

D2. Recursive Enumerability and Decidability Recursive Enumerability

Recursive Enumerability: Examples (1)

» ¥ ={a,b}, f(x) = a* enumerates {¢, a,aa,...}.
hund if xmod3 =0
» ¥ ={a,b,...,z}, f(x) = { katze if xmod3 =1
superpapagei if xmod3 =2
enumerates {hund, katze, superpapagei}.

2¥ — 1 (as digits) if 2¥ — 1 prime
P 2= {090 1) = {3 otherwise

enumerates Mersenne primes.

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 15 / 32

D2. Recursive Enumerability and Decidability Recursive Enumerability

Recursive Enumerability: Examples (2)

For every alphabet ¥, the language >* can be recursively
enumerated with a function fy+ : Ng — X*. (How?)

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 16

/ 32




D2. Recursive Enumerability and Decidability Semi-Decidability

D2.4 Semi-Decidability

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 17 / 32

D2. Recursive Enumerability and Decidability

Semi-Decidability

Definition (Semi-Decidable)
A language L C ¥* is called semi-decidable if the following
function x : ¥* —, {0,1} is computable.

Here, for all w € X*:

, 1 ifwel
x(w) = . .
undefined ifw ¢ L

German: semi-entscheidbar

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019

Semi-Decidability

18 / 32

D2. Recursive Enumerability and Decidability Semi-Decidability

Type-0 Languages vs. Semi-Decidability

v

Consider a DTM M that accepts a language L.

v

On input w
» M stops after a finite number of steps in an end state if w € L.
» For w & L, the computation does not terminate.

» We can easily create a DTM M’ from M that computes /.
(How?)

» Vice versa, given a DTM that computes y/, for some language
L, we can derive a DTM that accepts L.

Theorem (Semi-Decidable = Type 0)
A language L is of type 0 iff L is semi-decidable.

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 19 / 32

D2. Recursive Enumerability and Decidability

Recursive Enumerability and Semi-Decidability (1)

Theorem (Recursively Enumerable = Semi-Decidable)
A language L is recursively enumerable iff L is semi-decidable.

Proof.
Special case L = () is not a problem. (Why?)

Thus, let L # () be a language over the alphabet X

(=): L is recursively enumerable.
Let f be a function that enumerates L.

Then this is a semi-decision procedure for L, given input w:
FOR n:=0,1,2,3,... DO
IF f(n) = w THEN
RETURN 1
END
DONE

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019

Semi-Decidability

20 / 32




D2. Recursive Enumerability and Decidability Semi-Decidability

Recursive Enumerability and Semi-Decidability (2)

Proof (continued).

(«=): L is semi-decidable with semi-decision procedure M.
Choose w € L arbitrarily. (We have L # (.)

Define:
i (%) if nis the encoding of pair (x,y)
f(n) = x and M executed on fx«(x) stops in y steps
w otherwise

f is total and computable and has codomain L.
Therefore f enumerates L. O

f uses idea of dovetailing: interleaving unboundedly many
computations by starting new computations dynamically forever

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 21 / 32

D2. Recursive Enumerability and Decidability

Characterizations of Semi-Decidability

Theorem
Let L be a language. The following statements are equivalent:

© L is semi-decidable.

@ L is recursively enumerable.

© L is of type 0.

Q L= L(M) for some Turing machine M

@ x| is (Turing-) computable.

Q L is the domain of a computable function.

@ L is the codomain of a computable function.

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019

Semi-Decidability

22 /32

D2. Recursive Enumerability and Decidability Semi-Decidability

Characterizations of Semi-Decidability: Proof (1)

< (5): definition of semi-decidability
(2): earlier theorem in this chapter
(5): earlier theorem in this chapter
(4): from Chapter C8
(6):

(

X, is computable with domain L

LU

5): to compute x’L, compute a function with domain L,
hen return 1

= (7): use a function enumerating L (special case L = ()

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 23 /32

D2. Recursive Enumerability and Decidability

Characterizations of Semi-Decidability: Proof (2)

Proof (continued).

(7) = (2): If L =10, obvious.

Otherwise, choose w € L arbitrarily, and let M be an algorithm
computing g : X* —, ¥* with codomain L.

To compute a function f enumerating L,

use the same dovetailing idea as in our earlier proof:

if n is the encoding of pair (x,y)

fz* X .
f(n) = g(fr(x)) and M executed on fx«(x) stops in y steps
w otherwise
L]
Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019

Semi-Decidability

24 / 32




D2. Recursive Enumerability and Decidability Decidability

D2.5 Decidability

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 25 / 32

D2. Recursive Enumerability and Decidability Decidability

Semi-Decidability

Definition (Semi-Decidable)
A language L C X* is called semi-decidable if x/ : ¥* —, {0,1} is
computable.

Here, for all w € X*:

1 ifwel
undefined ifw ¢ L

For w ¢ L, the computation does not (have to) terminate.

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 26 / 32

D2. Recursive Enumerability and Decidability Decidability

Decidability

Definition (Decidable)
A language L C ¥* is called decidable if x; : ¥* — {0,1},
the characteristic function of L, is computable.

Here, for all w € X*:

1 ifwel

xe(w) =4 fwel

German: entscheidbar, charakteristische Funktion

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 27 / 32

D2. Recursive Enumerability and Decidability Decidability

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

decidability:
——— Yes
W ———>
—O No
semi-decidability:
F——>0 Yes
W ———>
77
Example: Diophantine equations
Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 28 / 32




D2. Recursive Enumerability and Decidability Decidability

Connection Decidability /Semi-Decidability (1)

Theorem (Decidable vs. Semi-Decidable)
A language L is decidable iff both L and L are semi-decidable.

Proof.
(=): obvious (Why?)

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 29 / 32

D2. Recursive Enumerability and Decidability

Connection Decidability /Semi-Decidability (2)

Proof (continued).
(«): Let M, be a semi-deciding algorithm for L,
and let M be a semi-deciding algorithm for L.

The following algorithm then is a decision procedure for L,
i.e., computes x(w) for a given input word w:

FOR s:=1,2,3,... DO
IF M, stops on w in s steps with output 1 THEN
RETURN 1
END
IF Mz stops on w in s steps with output 1 THEN
RETURN 0
END
DONE

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019

Decidability

30 / 32

D2. Recursive Enumerability and Decidability Decidability

Example: Decidable # Known Algorithm

Computability of x; does not mean we know how to compute it:

» L= {n e N| there are n consecutive 7s
in the decimal representation of 7}.
L is decidable.
There are either 7-sequences of arbitrary length in 7 (case 1)
or there is a maximal number ng of consecutive 7s (case 2).

» Case 1: x.(n) =1 for all n
» Case 2: x1(n) =1if n < ng, otherwise it is 0

v

v

v

In both cases, the functions are computable.

v

We just do not know what is the correct function.

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019 31 /32

D2. Recursive Enumerability and Decidability

Summary

» decidability of problems (= languages)
corresponds to computability of “yes/no" functions
> semi-decidability:
> recognizing “yes” instances in finite time
» no answer for “no” instances

» decidability of L = semi-decidability of L and L
> semi-decidability = recursive enumerability

> relationship to type-0 languages

Gabriele Roger (University of Basel) Theory of Computer Science April 10, 2019

Summary

32 / 32




	Introduction
	Encoding/Decoding Functions
	Recursive Enumerability
	Semi-Decidability
	Decidability

