
Theory of Computer Science
D2. Recursive Enumerability and Decidability

Gabriele Röger

University of Basel

April 10, 2019

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 1 / 32

Theory of Computer Science
April 10, 2019 — D2. Recursive Enumerability and Decidability

D2.1 Introduction

D2.2 Encoding/Decoding Functions

D2.3 Recursive Enumerability

D2.4 Semi-Decidability

D2.5 Decidability

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 2 / 32

Overview: Computability Theory

Computability

Turing-Computability

Undecidable
Problems

(Semi-)Decidability

Halting Problem

Reductions

Rice’s Theorem

Other Problems

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 3 / 32

Overview: Computability Theory

Computability

Turing-Computability

Undecidable
Problems

(Semi-)Decidability

Halting Problem

Reductions

Rice’s Theorem

Other Problems

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 4 / 32

D2. Recursive Enumerability and Decidability Introduction

D2.1 Introduction

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 5 / 32

D2. Recursive Enumerability and Decidability Introduction

Guiding Question

Guiding question for next chapters:

Which kinds of problems cannot be
solved by a computer?

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 6 / 32

D2. Recursive Enumerability and Decidability Introduction

Computable Functions

For a higher level of abstraction, we consider the Church-Turing
thesis to be correct (we will further back this up in part F).

I Instead of saying Turing-computable, we just say computable.

I Instead of presenting TMs we use pseudo-code.

I Instead of only considering computable functions
over words (Σ∗ →p Σ∗) or numbers (Nk

0 →p N0),
we permit arbitrary domains and codomains
(e.g., Σ∗ →p {0, 1}, N0 → Σ∗), ignoring details of encoding.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 7 / 32

D2. Recursive Enumerability and Decidability Introduction

Computability vs. Decidability

I last chapter: computability of functions

I now: analogous concept for languages

Why languages?

I Only yes/no questions (“Is w ∈ L?”)
instead of general function computation (“What is f (w)?”)
makes it easier to investigate questions.

I Results are directly transferable to the more general problem
of computing arbitrary functions. (“playing 20 questions”)

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 8 / 32

D2. Recursive Enumerability and Decidability Introduction

How do we proceed?

I We first get to know computable functions for encoding pairs
of numbers as numbers (later used for dovetailing).

I Then we consider two new concepts
I recursive enumerability and
I semi-decidability

and relate them to each other and earlier concepts.

I Afterwards, we require termination of algorithms
 decidability

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 9 / 32

D2. Recursive Enumerability and Decidability Encoding/Decoding Functions

D2.2 Encoding/Decoding Functions

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 10 / 32

D2. Recursive Enumerability and Decidability Encoding/Decoding Functions

Encoding and Decoding: Binary Encode

Consider the function encode : N2
0 → N0 with:

encode(x , y) :=

(
x + y + 1

2

)
+ x

I encode is known as the Cantor pairing function
(German: Cantorsche Paarungsfunktion)

I encode is computable

I encode is bijective

x = 0 x = 1 x = 2 x = 3 x = 4
y = 0 0 2 5 9 14
y = 1 1 4 8 13 19
y = 2 3 7 12 18 25
y = 3 6 11 17 24 32
y = 4 10 16 23 31 40

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 11 / 32

D2. Recursive Enumerability and Decidability Encoding/Decoding Functions

Encoding and Decoding: Binary Decode

Consider the inverse functions
decode1 : N0 → N0 and decode2 : N0 → N0 of encode:

decode1(encode(x , y)) = x

decode2(encode(x , y)) = y

I decode1 and decode2 are computable

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 12 / 32

D2. Recursive Enumerability and Decidability Recursive Enumerability

D2.3 Recursive Enumerability

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 13 / 32

D2. Recursive Enumerability and Decidability Recursive Enumerability

Recursive Enumerability: Definition

Definition (Recursively Enumerable)

A language L ⊆ Σ∗ is called recursively enumerable
if L = ∅ or if there is a total and computable function
f : N0 → Σ∗ such that

L = {f (0), f (1), f (2) . . . }.

We then say that f (recursively) enumerates L.

Note: f does not have to be injective!

German: rekursiv aufzählbar, f zählt L (rekursiv) auf

 do not confuse with “abzählbar” (countable)

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 14 / 32

D2. Recursive Enumerability and Decidability Recursive Enumerability

Recursive Enumerability: Examples (1)

I Σ = {a, b}, f (x) = ax enumerates {ε, a, aa, . . . }.

I Σ = {a, b, . . . , z}, f (x) =


hund if x mod 3 = 0

katze if x mod 3 = 1

superpapagei if x mod 3 = 2

enumerates {hund, katze, superpapagei}.

I Σ = {0, . . . , 9}, f (x) =

{
2x − 1 (as digits) if 2x − 1 prime

3 otherwise
enumerates Mersenne primes.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 15 / 32

D2. Recursive Enumerability and Decidability Recursive Enumerability

Recursive Enumerability: Examples (2)

For every alphabet Σ, the language Σ∗ can be recursively
enumerated with a function fΣ∗ : N0 → Σ∗. (How?)

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 16 / 32

D2. Recursive Enumerability and Decidability Semi-Decidability

D2.4 Semi-Decidability

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 17 / 32

D2. Recursive Enumerability and Decidability Semi-Decidability

Semi-Decidability

Definition (Semi-Decidable)

A language L ⊆ Σ∗ is called semi-decidable if the following
function χ′L : Σ∗ →p {0, 1} is computable.

Here, for all w ∈ Σ∗:

χ′L(w) =

{
1 if w ∈ L

undefined if w 6∈ L

German: semi-entscheidbar

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 18 / 32

D2. Recursive Enumerability and Decidability Semi-Decidability

Type-0 Languages vs. Semi-Decidability

I Consider a DTM M that accepts a language L.
I On input w

I M stops after a finite number of steps in an end state if w ∈ L.
I For w 6∈ L, the computation does not terminate.

I We can easily create a DTM M ′ from M that computes χ′L.
(How?)

I Vice versa, given a DTM that computes χ′L for some language
L, we can derive a DTM that accepts L.

Theorem (Semi-Decidable = Type 0)

A language L is of type 0 iff L is semi-decidable.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 19 / 32

D2. Recursive Enumerability and Decidability Semi-Decidability

Recursive Enumerability and Semi-Decidability (1)

Theorem (Recursively Enumerable = Semi-Decidable)

A language L is recursively enumerable iff L is semi-decidable.

Proof.

Special case L = ∅ is not a problem. (Why?)

Thus, let L 6= ∅ be a language over the alphabet Σ.

(⇒): L is recursively enumerable.
Let f be a function that enumerates L.

Then this is a semi-decision procedure for L, given input w :
FOR n := 0, 1, 2, 3, . . . DO

IF f (n) = w THEN
RETURN 1

END
DONE . . .

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 20 / 32

D2. Recursive Enumerability and Decidability Semi-Decidability

Recursive Enumerability and Semi-Decidability (2)

Proof (continued).

(⇐): L is semi-decidable with semi-decision procedure M.
Choose w̃ ∈ L arbitrarily. (We have L 6= ∅.)

Define:

f (n) =

fΣ∗(x)
if n is the encoding of pair 〈x , y〉
and M executed on fΣ∗(x) stops in y steps

w̃ otherwise

f is total and computable and has codomain L.
Therefore f enumerates L.

f uses idea of dovetailing: interleaving unboundedly many
computations by starting new computations dynamically forever

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 21 / 32

D2. Recursive Enumerability and Decidability Semi-Decidability

Characterizations of Semi-Decidability

Theorem
Let L be a language. The following statements are equivalent:

1 L is semi-decidable.

2 L is recursively enumerable.

3 L is of type 0.

4 L = L(M) for some Turing machine M

5 χ′L is (Turing-) computable.

6 L is the domain of a computable function.

7 L is the codomain of a computable function.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 22 / 32

D2. Recursive Enumerability and Decidability Semi-Decidability

Characterizations of Semi-Decidability: Proof (1)

Proof.

(1) ⇔ (5): definition of semi-decidability

(1) ⇔ (2): earlier theorem in this chapter

(4) ⇔ (5): earlier theorem in this chapter

(3) ⇔ (4): from Chapter C8

(5) ⇒ (6): χ′L is computable with domain L

(6) ⇒ (5): to compute χ′L, compute a function with domain L,
then return 1

(2) ⇒ (7): use a function enumerating L (special case L = ∅) . . .

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 23 / 32

D2. Recursive Enumerability and Decidability Semi-Decidability

Characterizations of Semi-Decidability: Proof (2)

Proof (continued).

(7) ⇒ (2): If L = ∅, obvious.

Otherwise, choose w̃ ∈ L arbitrarily, and let M be an algorithm
computing g : Σ∗ →p Σ∗ with codomain L.

To compute a function f enumerating L,
use the same dovetailing idea as in our earlier proof:

f (n) =

g(fΣ∗(x))
if n is the encoding of pair 〈x , y〉
and M executed on fΣ∗(x) stops in y steps

w̃ otherwise

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 24 / 32

D2. Recursive Enumerability and Decidability Decidability

D2.5 Decidability

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 25 / 32

D2. Recursive Enumerability and Decidability Decidability

Semi-Decidability

Definition (Semi-Decidable)

A language L ⊆ Σ∗ is called semi-decidable if χ′L : Σ∗ →p {0, 1} is
computable.

Here, for all w ∈ Σ∗:

χ′L(w) =

{
1 if w ∈ L

undefined if w 6∈ L

For w 6∈ L, the computation does not (have to) terminate.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 26 / 32

D2. Recursive Enumerability and Decidability Decidability

Decidability

Definition (Decidable)

A language L ⊆ Σ∗ is called decidable if χL : Σ∗ → {0, 1},
the characteristic function of L, is computable.

Here, for all w ∈ Σ∗:

χL(w) :=

{
1 if w ∈ L

0 if w /∈ L

German: entscheidbar, charakteristische Funktion

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 27 / 32

D2. Recursive Enumerability and Decidability Decidability

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

Case

decidability:

w
Yes

No

semi-decidability:

w
Yes

???

Example: Diophantine equations

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 28 / 32

D2. Recursive Enumerability and Decidability Decidability

Connection Decidability/Semi-Decidability (1)

Theorem (Decidable vs. Semi-Decidable)

A language L is decidable iff both L and L̄ are semi-decidable.

Proof.

(⇒): obvious (Why?) . . .

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 29 / 32

D2. Recursive Enumerability and Decidability Decidability

Connection Decidability/Semi-Decidability (2)

Proof (continued).

(⇐): Let ML be a semi-deciding algorithm for L,
and let ML̄ be a semi-deciding algorithm for L̄.

The following algorithm then is a decision procedure for L,
i.e., computes χL(w) for a given input word w :

FOR s := 1, 2, 3, . . . DO
IF ML stops on w in s steps with output 1 THEN

RETURN 1
END
IF ML̄ stops on w in s steps with output 1 THEN

RETURN 0
END

DONE

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 30 / 32

D2. Recursive Enumerability and Decidability Decidability

Example: Decidable 6= Known Algorithm

Computability of χL does not mean we know how to compute it:

I L = {n ∈ N | there are n consecutive 7s
L = {n ∈ N | in the decimal representation of π}.

I L is decidable.
I There are either 7-sequences of arbitrary length in π (case 1)

or there is a maximal number n0 of consecutive 7s (case 2).
I Case 1: χL(n) = 1 for all n
I Case 2: χL(n) = 1 if n ≤ n0, otherwise it is 0

I In both cases, the functions are computable.

I We just do not know what is the correct function.

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 31 / 32

D2. Recursive Enumerability and Decidability Summary

Summary

I decidability of problems (= languages)
corresponds to computability of “yes/no” functions

I semi-decidability:
I recognizing “yes” instances in finite time
I no answer for “no” instances

I decidability of L = semi-decidability of L and L̄

I semi-decidability = recursive enumerability

I relationship to type-0 languages

Gabriele Röger (University of Basel) Theory of Computer Science April 10, 2019 32 / 32

	Introduction
	Encoding/Decoding Functions
	Recursive Enumerability
	Semi-Decidability
	Decidability

