Theory of Computer Science
D1. Turing-Computability

Gabriele Roger

University of Basel

April 8, 2019

Overview: Course

contents of this course:

A.

background v
> mathematical foundations and proof techniques
logic v
> How can knowledge be represented?
How can reasoning be automated?
automata theory and formal languages v
> What is a computation?

. Turing computability

> What can be computed at all?

. complexity theory

> What can be computed efficiently?

more computability theory
> Other models of computability

Main Question

Main question in this part of the course:

What can be computed
by a computer?

Overview: Computability Theory

Turing-Computability ‘

(Semi-)Decidability ‘

Undecidable

Hal Probl
Problems alting Problem ‘

Rice's Theorem |

_{
H
= Reductions |
u
u

Other Problems |

Overview: Computability Theory

(Semi-)Decidability ‘

Undecidable

Hal Probl
Problems alting Problem ‘

Rice's Theorem |

_{
H
= Reductions |
u
u

Other Problems |

Turing-Computable Functions

©00000000000000

Turing-Computable Functions

Turing-Computable Functions
0@0000000000000

Summar

Computation

What is a computation?
m intuitive model of computation (pen and paper)
m vs. computation on physical computers

m vs. formal mathematical models

In the following chapters we investigate
models of computation for partial functions f : N’g —p No.

m no real limitation: arbitrary information
can be encoded as numbers

German: Berechnungsmodelle

Turing-Computable Functions
00®000000000000

Church-Turing Thesis

Church-Turing Thesis

All functions that can be computed in the intuitive sense
can be computed by a Turing machine.

German: Church-Turing-These

m cannot be proven (why not?)

m but we will collect evidence for it (~~ part F)

Turing-Computable Functions Summary

000@00000000000

Reminder: Deterministic Turing Machine (DTM)

Definition (Deterministic Turing Machine)

A deterministic Turing machine (DTM) is given by a 7-tuple
M= (Q,%,T,d,qo,0, E) with:
m Q finite, non-empty set of states
Y # () finite input alphabet
IC D X finite tape alphabet
0:(Q\E)xT—= QxT x{L,R,N} transition function
go € @ start state
O e I'\ X blank symbol
E C @ end states

Turing-Computable Functions Summary

0O000@0000000000

Reminder: Configurations and Computation Steps

How do Turing Machines Work?

m configuration: (o, q,8) withael*, qe Q, BeTl™

m one computation step: ¢ F ¢’ if one computation step
can turn configuration ¢ into configuration ¢’

m multiple computation steps: ¢ F* ¢’ if 0 or more computation
steps can turn configuration c into configuration ¢’
(c=atatab---Fc1kbec=¢, n>0)

(Definition of I, i.e., how a computation step changes the
configuration, is not repeated here. ~~ Chapter C7)

Turing-Computable Functions

0O0000e000000000

Questions

N

00

~

Questions?

Turing-Computable Functions

0000008000000 00

Computation of Functions?

How can a DTM compute a function?
m “Input” x is the initial tape content

m “Output” f(x) is the tape content (ignoring blanks
at the left and right) when reaching an end state

m If the TM does not stop for the given input,
f(x) is undefined for this input.

Which kinds of functions can be computed this way?
m directly, only functions on words: f : ¥* —, L*

m interpretation as functions on numbers f : N& —, No:
encode numbers as words

Turing-Computable Functions Summary

0000000 e0000000

Turing Machines: Computed Function

Definition (Function Computed by a Turing Machine)

ADTM M =(Q,%,T,0,qo,, E) computes the (partial) function
f:¥X* —p X* for which:

for all x,y € X*: f(x) =y iff (g, g0, x) F* (O...0, ge, yOI...O)

with ge € E. (special case: initial configuration (e, qo,) if x = ¢)

German: DTM berechnet f

m What happens if symbols from I' \ ¥ (e.g., 0J) occur in y?

m What happens if the read-write head is not
on the first symbol of y at the end?

m Is f uniquely defined by this definition? Why?

Turing-Computable Functions
00000000e000000

Turing-Computable Functions on Words

Definition (Turing-Computable, f : * —, X*)

A (partial) function f : ©* —, ©* is called Turing-computable
if a DTM that computes f exists.

German: Turing-berechenbar

Turing-Computable Functions Summary

000000000 e00000

Example: Turing-Computable Functions on Words

Let ¥ = {a,b, #}.
The function f : ¥* —, ¥* with f(w) = w#w for all w € ©*
is Turing-computable.

~~ blackboard

Turing-Computable Functions
0000000000e0000

Summary

Encoding Numbers as Words

Definition (Encoded Function)

Let f : N§ —, No be a (partial) function.
The encoded function £°4¢ of f is the partial function
feode . 3¢ 5 ¥* with & = {0, 1,#} and f°%(w) = w’ iff
m there are ny, ..., ng, n’ € Ng such that
mf(n,...,ng)=n,
m w = bin(ny)#...#bin(ny) and
m w' = bin(n').
Here bin: Ng — {0,1}* is the binary encoding
(e.g., bin(5) = 101).

German: kodierte Funktion
Example: (5,2,3) = 4 corresponds to £<°4¢(101#10#11) = 100.

Turing-Computable Functions
00000000000e000

Turing-Computable Numerical Functions

Definition (Turing-Computable, f : N& —, Np)

A (partial) function f : N& —, Ny is called Turing-computable
if a DTM that computes %9 exists.

German: Turing-berechenbar

Turing-Computable Functions Summary

000000000000 e00

Example: Turing-Computable Numerical Function

The following numerical functions are Turing-computable:

m succ: Ng —p No with succ(n) :==n+1
-1 ifn>1
m pred; : Ng —, Ng with pred;(n) := " I h=
0 ifn=0
n—1 if n>1

d, : No —p No with pred,(n) :=
m pred, : No —p No with pred;(n) {undefined ifn=0

~~ blackboard/exercises

Turing-Computable Functions Summary

0000000000000 e0

More Turing-Computable Numerical Functions

The following numerical functions are Turing-computable:

m add : N% —p No with add(ny, n2) := ny + no

m sub: N2 —, No with sub(ny, n2) := max{n; — n2,0}

m mul: N3 —, No with mul(n1, np) == ny - np

[n—ﬂ if ny # 0

m div: N2 —, N with div(n1, np) =
undefined if no =0

~~ sketch?

Turing-Computable Functions

0000000000000 0e

Questions

N

00

~

Questions?

[Je]

Summary

Summary

Summary

main question: what can a computer compute?
approach: investigate formal models of computation
here: deterministic Turing machines

Turing-computable function f : 3" —, >*:

there is a DTM that transforms every input w € &*
into the output f(w) (undefined if DTM does not stop
or stops in invalid configuration)

Turing-computable function 7 : Né —p No:
ditto; numbers encoded in binary and separated by #

oe

	Turing-Computable Functions
	Summary

