Theory of Computer Science
C8. Type-1 and Type-0 Languages: Closure & Decidability

Gabriele Roger

University of Basel

April 8, 2019

Overview

Languages
& Grammars

Regular
Languages

- Context-free

Languages

Closure properties
& decidability

Turing Machines vs. Grammars

©0000000000

Turing Machines vs. Grammars

Turing Machines vs. Grammars
O@000000000

Reminder: Turing Machines — Conceptually

infinite tape
~-|glgg]plalclalcfaflc[alaja] |-

- |—>
read-write head

Turing Machines vs. Grammars Summary

00@00000000

Reminder: Nondeterministic Turing Machine

Definition (Nondeterministic Turing Machine)

A nondeterministic Turing machine (NTM) is given by a 7-tuple
M= (Q,%,T,d,qo,0, E) with:
m Q finite non-empty set of states
Y # () finite input alphabet
IC D X finite tape alphabet
0 (Q\E)xT = P(Q xT x{L,R,N}) transition function
go € @ start state
O e I'\ X blank symbol
E C @ end states

Turing Machines vs. Grammars
[e]e]e] lelelelelele]e)

One Automata Model for Two Grammar Types?

Don't we need
different automata models for
context-sensitive and type-0
languages?

Picture courtesy of stockimages / FreeDigitalPhotos.net

Turing Machines vs. Grammars and Decidability

0O000@000000

Linear Bounded Automata: ldea

m Linear bounded automata are NTMs that may only use
the part of the tape occupied by the input word.

m one way of formalizing this: NTMs where blank symbol
may never be replaced by a different symbol

Summar

Turing Machines vs. Grammars Closure and Decidability
0O0000e00000 olo O

Linear Bounded Turing Machines: Definition

Definition (Linear Bounded Automata)

Summar

An NTM M = (Q, %, T, 4, go, 0, E)

is called a linear bounded automaton (LBA)

if for all g € Q \ E and all transition rules (¢, c,y) € 6(q,0)
we have ¢ = [.

German: linear beschrankte Turingmaschine

Turing Machines vs. Grammars
00000080000

LBAs Accept Type-1 Languages

The languages that can be accepted by linear bounded automata
are exactly the context-sensitive (type-1) languages.

Without proof.

Turing Machines vs. Grammars re and Decidability

00000080000

LBAs Accept Type-1 Languages

Summary

The languages that can be accepted by linear bounded automata
are exactly the context-sensitive (type-1) languages.

Without proof.

proof sketch for grammar = NTM direction:
m computation of the NTM follows the production of the word
in the grammar in opposite order
® accept when only start symbol (and blanks)
are left on the tape

m because language is context-sensitive,
we never need additional space on the tape
(empty word needs special treatment)

Turing Machines vs. Grammars
00000008000

NTMs Accept Type-0 Languages

The languages that can be accepted by nondeterministic
Turing machines are exactly the type-0 languages.

Without proof.

Turing Machines vs. Grammars C d Decidability Summar
0000000e000

NTMs Accept Type-0 Languages

The languages that can be accepted by nondeterministic
Turing machines are exactly the type-0 languages.

Without proof.

proof sketch for grammar = NTM direction:
m analogous to previous proof

m for grammar rules wy — wy with [wy| > |wal,
we must “insert” symbols into the existing tape content;
this is a bit tedious, but not very difficult

Turing Machines vs. Grammars
00000000800

Deterministic Turing Machines

Definition (Deterministic Turing Machine)

A deterministic Turing machine (DTM) is a Turing machine
M=(Q,x,T,é, qo,0, E) with
0:(Q\VE)xT — QxT x{LR,N}.

German: deterministische Turingmaschine

Turing Machines vs. Grammars
00000000080

Deterministic Turing Machines vs. Type-0 Languages

For every type-0 language L there is a deterministic
Turing machine M with L(M) = L.

Without proof.

Turing Machines vs. Grammars 9 re and Decidability Summar

0000000000

Deterministic Turing Machines vs. Type-0 Languages

For every type-0 language L there is a deterministic
Turing machine M with L(M) = L.

Without proof.
proof sketch:
m Let M’ be an NTM with £L(M') = L.
m It is possible to construct a DTM that systematically searches

for an accepting configuration in the computation tree of M’.

Note: It is an open problem whether an analogous theorem
holds for type-1 languages and deterministic LBAs.

Turing Machines vs. Grammars

000000000 0e

Questions

N

00

~

Questions?

Closure Properties and Decidability

Closure and Decidability
[] YoloTo)

Overview

Languages
& Grammars

Regular
Languages

- Context-free

Languages

Turing machines

Closure and Decidability
00®00

Closure Properties

Intersection Union Complement Product Star

Type 2 No Yes No Yes Yes
Type 0 Yes(?) Yes(1) No(3) Yes() Yes()
Proofs?

(1) proof via grammars, similar to context-free cases
(2) without proof
(3) proof in later chapters (part D)

Decidability

Word Emptiness Equivalence Intersection
problem problem problem problem
Type 2 Yes Yes No No
Type 0 No(#) No(#) No(4) No(#)

Proofs?

(1) same argument we used for context-free languages

(2) because already undecidable for context-free languages
(3) without proof

(4) proofs in later chapters (part D)

Closure and Decidability

[e]e]e]e] }

Questions

N

00

~

Questions?

Summary

vs. Grammars e and Decidability Summary

Summary

m Turing machines accept exactly the type-0 languages.
This is also true for deterministic Turing machines.

m Linear bounded automata accept exactly
the context-sensitive languages.

m The context-sensitive and type-0 languages are closed
under almost all usual operations.

m exception: type-0 not closed under complement

m For context-sensitive and type-0 languages
almost no problem is decidable.

m exception: word problem for context-sensitive lang. decidable

What's Next?

d Decidability Summary

contents of this course:

A.

background v
> mathematical foundations and proof techniques
logic v
> How can knowledge be represented?
How can reasoning be automated?
automata theory and formal languages
> What is a computation?

. Turing computability

> What can be computed at all?

. complexity theory

> What can be computed efficiently?

more computability theory
> Other models of computability

d Decidability Summary

What's Next?

contents of this course:

A. background v/
> mathematical foundations and proof techniques
B. logic v/
> How can knowledge be represented?
How can reasoning be automated?
C. automata theory and formal languages v/
> What is a computation?
D. Turing computability
> What can be computed at all?
E. complexity theory
> What can be computed efficiently?

F. more computability theory
> Other models of computability

	Turing Machines vs. Grammars
	Closure Properties and Decidability

