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Reminder: Turing Machines – Conceptually

. . . � � � b a c a c a c a � � . . .

infinite tape

read-write head
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Reminder: Nondeterministic Turing Machine

Definition (Nondeterministic Turing Machine)

A nondeterministic Turing machine (NTM) is given by a 7-tuple
M = 〈Q,Σ, Γ, δ, q0,�,E 〉 with:

Q finite non-empty set of states

Σ 6= ∅ finite input alphabet

Γ ⊃ Σ finite tape alphabet

δ : (Q \ E )× Γ→ P(Q × Γ× {L,R,N}) transition function

q0 ∈ Q start state

� ∈ Γ \ Σ blank symbol

E ⊆ Q end states
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One Automata Model for Two Grammar Types?

Don’t we need
different automata models for
context-sensitive and type-0

languages?

Picture courtesy of stockimages / FreeDigitalPhotos.net
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Linear Bounded Automata: Idea

Linear bounded automata are NTMs that may only use
the part of the tape occupied by the input word.

one way of formalizing this: NTMs where blank symbol
may never be replaced by a different symbol
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Linear Bounded Turing Machines: Definition

Definition (Linear Bounded Automata)

An NTM M = 〈Q,Σ, Γ, δ, q0,�,E 〉
is called a linear bounded automaton (LBA)
if for all q ∈ Q \ E and all transition rules 〈q′, c , y〉 ∈ δ(q,�)
we have c = �.

German: linear beschränkte Turingmaschine
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LBAs Accept Type-1 Languages

Theorem

The languages that can be accepted by linear bounded automata
are exactly the context-sensitive (type-1) languages.

Without proof.

proof sketch for grammar ⇒ NTM direction:

computation of the NTM follows the production of the word
in the grammar in opposite order

accept when only start symbol (and blanks)
are left on the tape

because language is context-sensitive,
we never need additional space on the tape
(empty word needs special treatment)
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NTMs Accept Type-0 Languages

Theorem

The languages that can be accepted by nondeterministic
Turing machines are exactly the type-0 languages.

Without proof.

proof sketch for grammar ⇒ NTM direction:

analogous to previous proof

for grammar rules w1 → w2 with |w1| > |w2|,
we must “insert” symbols into the existing tape content;
this is a bit tedious, but not very difficult
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Deterministic Turing Machines

Definition (Deterministic Turing Machine)

A deterministic Turing machine (DTM) is a Turing machine
M = 〈Q,Σ, Γ, δ, q0,�,E 〉 with
δ : (Q \ E )× Γ→ Q × Γ× {L,R,N}.

German: deterministische Turingmaschine
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Deterministic Turing Machines vs. Type-0 Languages

Theorem

For every type-0 language L there is a deterministic
Turing machine M with L(M) = L.

Without proof.

proof sketch:

Let M ′ be an NTM with L(M ′) = L.

It is possible to construct a DTM that systematically searches
for an accepting configuration in the computation tree of M ′.

Note: It is an open problem whether an analogous theorem
Note: holds for type-1 languages and deterministic LBAs.
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Questions

Questions?
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Closure Properties and Decidability
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Closure Properties

Intersection Union Complement Product Star

Type 3 Yes Yes Yes Yes Yes

Type 2 No Yes No Yes Yes

Type 1 Yes(2) Yes(1) Yes(2) Yes(1) Yes(1)

Type 0 Yes(2) Yes(1) No(3) Yes(1) Yes(1)

Proofs?
(1) proof via grammars, similar to context-free cases
(2) without proof
(3) proof in later chapters (part D)
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Decidability

Word
problem

Emptiness
problem

Equivalence
problem

Intersection
problem

Type 3 Yes Yes Yes Yes

Type 2 Yes Yes No No

Type 1 Yes(1) No(3) No(2) No(2)

Type 0 No(4) No(4) No(4) No(4)

Proofs?
(1) same argument we used for context-free languages
(2) because already undecidable for context-free languages
(3) without proof
(4) proofs in later chapters (part D)
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Summary

Turing machines accept exactly the type-0 languages.
This is also true for deterministic Turing machines.

Linear bounded automata accept exactly
the context-sensitive languages.

The context-sensitive and type-0 languages are closed
under almost all usual operations.

exception: type-0 not closed under complement

For context-sensitive and type-0 languages
almost no problem is decidable.

exception: word problem for context-sensitive lang. decidable
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What’s Next?

contents of this course:

A. background X
. mathematical foundations and proof techniques

B. logic X
. How can knowledge be represented?
. How can reasoning be automated?

C. automata theory and formal languages

X

. What is a computation?

D. Turing computability
. What can be computed at all?

E. complexity theory
. What can be computed efficiently?

F. more computability theory
. Other models of computability
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