

Theory of Computer Science

C4. Regular Languages: Minimal Automata, Closure Properties and Decidability

Gabriele Röger

University of Basel

March 27, 2019

Theory of Computer Science

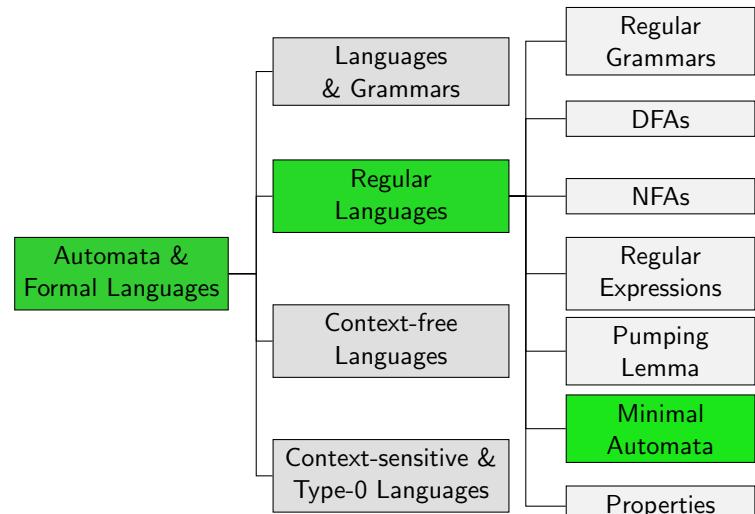
March 27, 2019 — C4. Regular Languages: Minimal Automata, Closure Properties and Decidability

C4.1 Minimal Automata

C4.2 Closure Properties

C4.3 Decidability

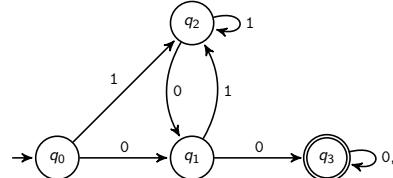
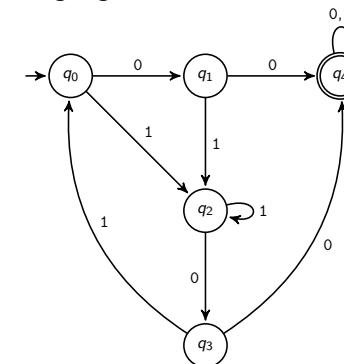
Overview



C4.1 Minimal Automata

Example

The following DFAs accept the same language:



Question: What is the **smallest** DFA that accepts this language?

Minimal Automaton: Algorithm

Input: DFA M

(without states that are unreachable from the start state)

Output: list of states that have to be merged
to obtain an equivalent minimal automaton

- ① Create table of all pairs of states $\{q, q'\}$ with $q \neq q'$.
- ② Mark all pairs $\{q, q'\}$ with $q \in E$ and $q' \notin E$.
- ③ If there is an unmarked pair $\{q, q'\}$ where $\{\delta(q, a), \delta(q', a)\}$ for some $a \in \Sigma$ is already marked, then also mark $\{q, q'\}$.
- ④ Repeat the last step until there are no more changes.
- ⑤ All states in pairs that are still unmarked can be merged into one state.

Minimal Automaton: Definition

Definition
A **minimal automaton** for a regular language L is a DFA $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ with $\mathcal{L}(M) = L$ and a **minimal number of states**.

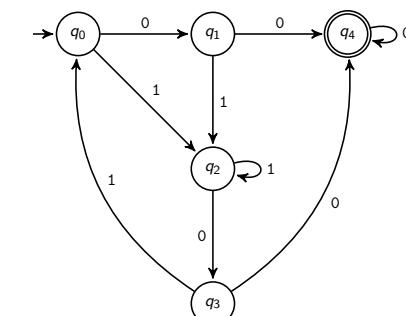
This means there is no DFA $M' = \langle Q', \Sigma, \delta', q'_0, E' \rangle$ with $\mathcal{L}(M) = \mathcal{L}(M')$ and $|Q'| < |Q|$.

How to find a minimal automaton?

Idea:

- ▶ Start with any DFA that accepts the language.
- ▶ Merge states from which exactly the same words lead to an end state.

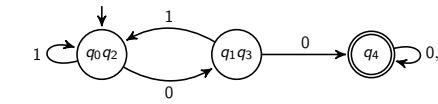
Minimal Automaton: Example



q_1	\times		
q_2		\times	
q_3	\times		\times
q_4	\times	\times	\times
q_0	q_1	q_2	q_3

States q_0, q_2 and q_1, q_3 can be merged into one state each.

Result:



Computation and Uniqueness of Minimal Automata

Theorem

The algorithm described on the previous slides produces a minimal automaton for the language accepted by the given input DFA.

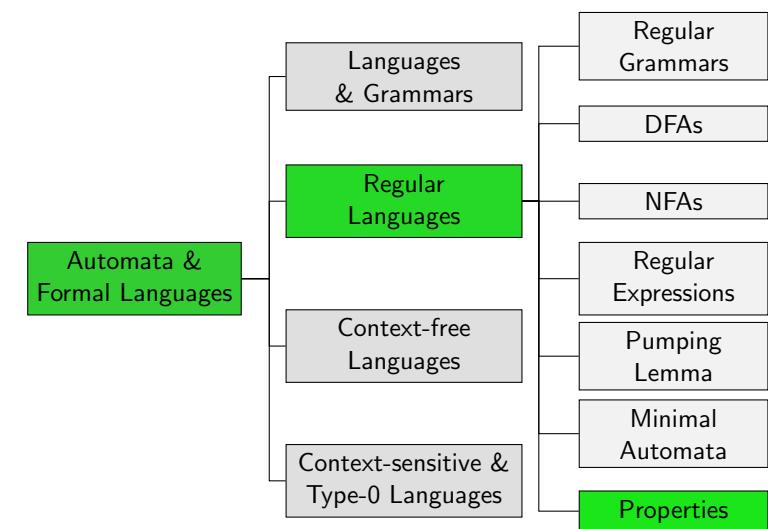
Theorem

All minimal automata for a language L are unique up to isomorphism (i.e., renaming of states).

Without proof.

C4.2 Closure Properties

Overview



Closure Properties

How can you combine regular languages in a way to get another regular language as a result?

Closure Properties: Operations

Let L and L' be regular languages over Σ and Σ' , respectively.

We consider the following operations:

- ▶ **union** $L \cup L' = \{w \mid w \in L \text{ or } w \in L'\}$ over $\Sigma \cup \Sigma'$
- ▶ **intersection** $L \cap L' = \{w \mid w \in L \text{ and } w \in L'\}$ over $\Sigma \cap \Sigma'$
- ▶ **complement** $\bar{L} = \{w \in \Sigma^* \mid w \notin L\}$ over Σ
- ▶ **product** $LL' = \{uv \mid u \in L \text{ and } v \in L'\}$ over $\Sigma \cup \Sigma'$
 - ▶ special case: $L^n = L^{n-1}L$, where $L^0 = \{\varepsilon\}$
- ▶ **star** $L^* = \bigcup_{k \geq 0} L^k$ over Σ

German: Abschlusseigenschaften, Vereinigung, Schnitt, Komplement, Produkt, Stern

Closure Properties

Definition (Closure)

Let \mathcal{K} be a class of languages.

Then \mathcal{K} is **closed**...

- ▶ ... under union if $L, L' \in \mathcal{K}$ implies $L \cup L' \in \mathcal{K}$
- ▶ ... under intersection if $L, L' \in \mathcal{K}$ implies $L \cap L' \in \mathcal{K}$
- ▶ ... under complement if $L \in \mathcal{K}$ implies $\bar{L} \in \mathcal{K}$
- ▶ ... under product if $L, L' \in \mathcal{K}$ implies $LL' \in \mathcal{K}$
- ▶ ... under star if $L \in \mathcal{K}$ implies $L^* \in \mathcal{K}$

German: Abgeschlossenheit, \mathcal{K} ist abgeschlossen unter Vereinigung (Schnitt, Komplement, Produkt, Stern)

Closure Properties of Regular Languages

Theorem

The regular languages are closed under:

- ▶ **union**
- ▶ **intersection**
- ▶ **complement**
- ▶ **product**
- ▶ **star**

Closure Properties

Proof.

Closure under **union, product, and star** follows because for regular expressions α and β , the expressions $(\alpha|\beta)$, $(\alpha\beta)$ and (α^*) describe the corresponding languages.

Complement: Let $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ be a DFA with $\mathcal{L}(M) = L$. Then $M' = \langle Q, \Sigma, \delta, q_0, Q \setminus E \rangle$ is a DFA with $\mathcal{L}(M') = \bar{L}$.

Intersection: Let $M_1 = \langle Q_1, \Sigma_1, \delta_1, q_{01}, E_1 \rangle$ and $M_2 = \langle Q_2, \Sigma_2, \delta_2, q_{02}, E_2 \rangle$ be DFAs. The **product automaton**

$$M = \langle Q_1 \times Q_2, \Sigma_1 \cap \Sigma_2, \delta, (q_{01}, q_{02}), E_1 \times E_2 \rangle$$

$$\text{with } \delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$$

accepts $\mathcal{L}(M) = \mathcal{L}(M_1) \cap \mathcal{L}(M_2)$. □

German: Kreuzproduktautomat

C4.3 Decidability

Decision Problems and Decidability (2)

Notes:

- ▶ not a formal definition: we did not formally define "algorithm", "input", "output" etc. (which is not trivial)
- ▶ lack of a formal definition makes it difficult to prove that something is **not** decidable
- ~~> studied thoroughly in the next part of the course

Decision Problems and Decidability (1)

"Intuitive Definition:" Decision Problem, Decidability

A **decision problem** is an algorithmic problem where

- ▶ for a given **input**
- ▶ an **algorithm** determines if the input has a given **property**
- ▶ and then produces the **output** "yes" or "no" accordingly.

A decision problem is **decidable** if an algorithm for it (that always gives the correct answer) exists.

German: Entscheidungsproblem, Eingabe, Eigenschaft, Ausgabe, entscheidbar

Note: "exists" \neq "is known"

Decision Problems: Example

For now we describe decision problems in a semi-formal "given" / "question" way:

Example (Emptiness Problem for Regular Languages)

The **emptiness problem** P_\emptyset for **regular languages** is the following problem:

Given: regular grammar G
Question: Is $\mathcal{L}(G) = \emptyset$?

German: Leerheitsproblem

Word Problem

Definition (Word Problem for Regular Languages)

The **word problem** P_{\in} for regular languages is:

Given: regular grammar G with alphabet Σ
and word $w \in \Sigma^*$

Question: Is $w \in \mathcal{L}(G)$?

German: Wortproblem (für reguläre Sprachen)

Emptiness Problem

Definition (Emptiness Problem for Regular Languages)

The **emptiness problem** P_{\emptyset} for regular languages is:

Given: regular grammar G

Question: Is $\mathcal{L}(G) = \emptyset$?

German: Leerheitsproblem

Decidability: Word Problem

Theorem

The word problem for regular languages is **decidable**.

Proof.

Construct a DFA M with $\mathcal{L}(M) = \mathcal{L}(G)$.

(The proofs in Chapter C2 describe a possible method.)

Simulate M on input w . The simulation ends after $|w|$ steps.

The DFA M is an end state after this iff $w \in \mathcal{L}(G)$.

Print "yes" or "no" accordingly. □

Decidability: Emptiness Problem

Theorem

The emptiness problem for regular languages is **decidable**.

Proof.

Construct a DFA M with $\mathcal{L}(M) = \mathcal{L}(G)$.

We have $\mathcal{L}(G) = \emptyset$ iff in the transition diagram of M there is no path from the start state to any end state.

This can be checked with standard graph algorithms
(e.g., breadth-first search). □

Finiteness Problem

Definition (Finiteness Problem for Regular Languages)

The **finiteness problem** P_∞ for regular languages is:

Given: regular grammar G

Question: Is $|\mathcal{L}(G)| < \infty$?

German: Endlichkeitsproblem

Intersection Problem

Definition (Intersection Problem for Regular Languages)

The **intersection problem** P_\cap for regular languages is:

Given: regular grammars G and G'

Question: Is $\mathcal{L}(G) \cap \mathcal{L}(G') = \emptyset$?

German: Schnittproblem

Decidability: Finiteness Problem

Theorem

The finiteness problem for regular languages is **decidable**.

Proof.

Construct a DFA M with $\mathcal{L}(M) = \mathcal{L}(G)$.

We have $|\mathcal{L}(G)| = \infty$ iff in the transition diagram of M there is a cycle that is reachable from the start state and from which an end state can be reached.

This can be checked with standard graph algorithms. □

Decidability: Intersection Problem

Theorem

The intersection problem for regular languages is **decidable**.

Proof.

Using the closure of regular languages under intersection, we can construct (e.g., by converting to DFAs, constructing the product automaton, then converting back to a grammar) a grammar G'' with $\mathcal{L}(G'') = \mathcal{L}(G) \cap \mathcal{L}(G')$ and use the algorithm for the emptiness problem P_\emptyset . □

Equivalence Problem

Definition (Equivalence Problem for Regular Languages)

The equivalence problem P_{\equiv} for regular languages is:

Given: regular grammars G and G'

Question: Is $\mathcal{L}(G) = \mathcal{L}(G')$?

German: Äquivalenzproblem

Summary

- ▶ **Minimal automata** are the smallest possible DFAs for a given language and are unique for each language.
- ▶ The regular languages are **closed** under all usual operations (union, intersection, complement, product, star).
- ▶ All usual decision problems (word problem, emptiness, finiteness, intersection, equivalence) are **decidable** for regular languages.

Decidability: Equivalence Problem

Theorem

The equivalence problem for regular languages is **decidable**.

Proof.

In general for languages L and L' , we have

$$L = L' \text{ iff } (L \cap \bar{L}') \cup (\bar{L} \cap L') = \emptyset.$$

The regular languages are closed under intersection, union and complement, and we know algorithms for these operations.

We can therefore construct a grammar for $(L \cap \bar{L}') \cup (\bar{L} \cap L')$ and use the algorithm for the emptiness problem P_{\emptyset} . □