Theory of Computer Science

C3. Regular Languages: Regular Expressions, Pumping Lemma

Gabriele Roger

University of Basel

March 25, 2019

Regular Expressions
9000000000000

Regular Expressions

Regular Expressions
0000000000000

Overview
| Regular
- Languages Grammars
& Grammars
— DFAs |

| Regular
Expressions
| Context-free Pumping
Languages — Lemma
L Minimal
| Context-sensitive & Automata
[V e —| properties

Regular Expressions

0O0@0000000000

Formalisms for Regular Languages

m DFAs, NFAs and regular grammars can all describe
exactly the regular languages.

m Are there other concepts with the same expressiveness?

Regular Expressions

0O0@0000000000

Formalisms for Regular Languages

m DFAs, NFAs and regular grammars can all describe
exactly the regular languages.

m Are there other concepts with the same expressiveness?

m Yes! ~- regular expressions

Regular Expressions

0O0@0000000000

Formalisms for Regular Languages

m DFAs, NFAs and regular grammars can all describe
exactly the regular languages.

m Are there other concepts with the same expressiveness?

m Yes! ~- regular expressions

Live demo

Regular Expressions
0008000000000

Overview

Regular
Languages Grammars

& Grammars
— DFAs |

L e

| Context-free Pumping
Languages — Lemma

L Minimal
| Context-sensitive & Automata
[V e —| properties

Regular Expressions

0O000@00000000

Regular Expressions: Definition

Definition (Regular Expressions)

Regular expressions over an alphabet ¥ are defined inductively:

m () is a regular expression
m ¢ is a regular expression

m If a € ¥, then ais a regular expression

If and (8 are regular expressions, then so are:
m (af) (concatenation)
m («|p) (alternative)
m (a*) (Kleene closure)

German: regulare Ausdriicke, Verkettung, Alternative, kleenesche Hiille

Regular Expressions

0O0000e0000000

Regular Expressions: Omitting Parentheses

omitted parentheses by convention:
m Kleene closure a* binds more strongly than concatenation af.
m Concatenation binds more strongly than alternative «/|g.

m Parentheses for nested concatenations/alternatives are omitted
(we can treat them as left-associative; it does not matter).

Example: ab*c|e|abab* abbreviates ((((a(b*))c)|e)|(((ab)a)(b*))).

Regular Expressions

0000008000000

Regular Expressions: Examples

some regular expressions for ¥ = {0, 1}:
m 0*10*
= (0[1)*1(0|1)*
= ((01)(0]1))"
= 01]10
= 0(0|1)*0|1(0[1)*1]0]1

Regular Expressions Pumping Lemma Summary

0O000000@00000

Regular Expressions: Language

Definition (Language Described by a Regular Expression)

The language described by a regular expression 7, written £(7),
is inductively defined as follows:

m If vy =0, then L(v) = 0.

m If v =¢, then L(v) = {e}.

m If vy =awith a € X, then L(v) = {a}.

m If v = (af), where a and 3 are regular expressions,
then L(v) = L(a)L(B).

m If v = («|B), where a and 3 are regular expressions,

—_ o~~~

then L(v) = L(«) U L(B).
m If v = (a*) where « is a regular expression,
then L(v) = L(a)*.

Examples: blackboard

Regular Expressions >umping a \umm ary

0000000080000

Finite Languages Can Be Described By Regular Expre55|ons

Every finite language can be described by a regular expression. I

Proof

For every word w € L*, a regular expression describing

the language {w} can be built from regular expressions a € ¥
by using concatenations.

(Use e if w=¢.)

For every finite language L = {w1,wa,..., wp},

a regular expression describing L can be built from the regular
expressions for {w;} by using alternatives.

(Use D if L=10.) O]

Regular Expressions
0000000008000

Regular Expressions Not More Powerful Than NFAs

For every language that can be described by a regular expression,
there is an NFA that accepts it.

Regular Expressions F\lm; ing Lemma Summary

0000000008000

Regular Expressions Not More Powerful Than NFAs

For every language that can be described by a regular expression,
there is an NFA that accepts it.

Proof

Let v be a regular expression.
We show the statement by induction over the structure
of regular expressions.

|

Fory =0,y =¢ and v = 3,
NFAs that accept £(+y) are obvious.

Regular Expressions B umpm Lemma Summary

0000000008000

Regular Expressions Not More Powerful Than NFAs

For every language that can be described by a regular expression,
there is an NFA that accepts it.

Proof (continued).

For v = (a), let M, and Mg be NFAs that (by ind. hypothesis)
accept L£(a) and L(3). W.l.o.g., their states are disjoint.

Construct NFA M for L(~y) by “daisy-chaining” M, and Mag:

m states: union of states of M, and Mg
B start states: those of M,; if ¢ € L(«), also those of Mg
m end states: end states of Mg

m state transitions: all transitions of M, and of Mg;
additionally: for every transition to an end state of M,,,
an equally labeled transition to all start states of Mg

Summary

Regular Expressions
0000000008000

Regular Expressions Not More Powerful Than NFAs

For every language that can be described by a regular expression,
there is an NFA that accepts it.

Proof (continued).

For v = («|3), by the induction hypothesis let M, = (Qqu, X, b0y Sas Ea)
and Mg = (Q3, X, 93, Sg, Eg) be NFAs that accept L(c) and L().
W.lo.g., QuN Qg =

Then the “union automaton”

= <Qa U Qg,z,éa U (55,5a U 557 E, U E5>

accepts the language L(7).

N

German: Vereinigungsautomat

Regular Expressions B umpm Lemma Summary

0000000008000

Regular Expressions Not More Powerful Than NFAs

For every language that can be described by a regular expression,
there is an NFA that accepts it.

Proof (continued).

For v = (a*), by the induction hypothesis let M, = (Qn, X, 00, Sar, Ewr)
be an NFA that accepts £(«).

If € ¢ £(«), add an additional state to M, that is a start and end state
and not connected to other states. M, now recognizes L(«a) U {e}.

M is constructed from M, by adding the following new transitions:
whenever M,, has a transition from s to end state s’ with symbol a,
add transitions from s to every start state with symbol a.

Then L(M) = L(7). O

Regular Expressions
0000000000800

DFAs Not More Powerful Than Regular Expressions

Every language accepted by a DFA can be described
by a regular expression.

Without proof.

Regular Expressions] E Summar

000000000000

Regular Languages vs. Regular Expressions

Theorem (Kleene)

The set of languages that can be described by regular expressions
is exactly the set of regular languages.

This follows directly from the previous two theorems.

Regular Expressions

000000000000 e

Questions

N

00

~

Questions?

Pumping Lemma
900000000000

Pumping Lemma

Pumping Lemma
0Oe000000000

Overview

Regular
Languages Grammars

& Grammars
— DFAs |

| Regular
Expressions
| Context-free

L Minimal
| Context-sensitive & Automata
[V e —| properties |

Pumping Lemma Summar

00@00000000

Pumping Lemma: Motivation

You can show that
a language is regular by specifying
an appropriate grammar, finite
automaton, or regular expression.
How can you you show that a language
is not regular?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Pumping Lemma

00@00000000

Pumping Lemma: Motivation

You can show that
a language is regular by specifying
an appropriate grammar, finite
automaton, or regular expression.
How can you you show that a language
is not regular?

m Direct proof that no regular grammar exists
that generates the language
~» difficult in general

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Pumping Lemma Summary

00@00000000

Pumping Lemma: Motivation

You can show that
a language is regular by specifying
an appropriate grammar, finite
automaton, or regular expression.
How can you you show that a language
is not regular?

m Direct proof that no regular grammar exists
that generates the language
~» difficult in general

m Pumping lemma: use a necessary property
that holds for all regular languages.

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Pumping Lemma Summary

000@0000000

Pumping Lemma

Theorem (Pumping Lemma)

Let L be a regular language. Then there is an n € N
(a pumping number for L) such that all words x € L with |x| > n
can be split into x = uvw with the following properties:

Q |v[>1,

Q@ |uv| < n, and

Q@ wiwel foralli=0,1,2,....

Question: what if L is finite?

Pumping Lemma Summar

00008000000

Pumping Lemma: Proof

Theorem (Pumping Lemma)

Let L be a regular language. Then there is an n € N
(a pumping number for L) such that all words x € L with |x| > n
can be split into x = uvw with the following properties:

o |v[>1,

@ |uv| < n, and

Q@ wiwel foralli=0,1,2,....

Pumping Lemma Summary

00008000000

Pumping Lemma: Proof

Theorem (Pumping Lemma)

Let L be a regular language. Then there is an n € N
(a pumping number for L) such that all words x € L with |x| > n
can be split into x = uvw with the following properties:

o |v[>1,

@ |uv| < n, and

Q@ wiwel foralli=0,1,2,....

Proof.

For regular L there exists a DFA M = (Q, ¥, 0, qo, E) with
L(M) = L. We show that n = |Q| has the desired properties.

| A\

\

Pumping Lemma Summary

00008000000

Pumping Lemma: Proof

Theorem (Pumping Lemma)
Let L be a regular language. Then there is an n € N
(a pumping number for L) such that all words x € L with |x| > n
can be split into x = uvw with the following properties:
Q |v|>1,
@ |uv| < n, and
Q@ wiwel foralli=0,1,2,....

Proof.

For regular L there exists a DFA M = (Q, ¥, 0, qo, E) with

L(M) = L. We show that n = |Q| has the desired properties.
Consider an arbitrary x € £L(M) with length |x| > |Q|. Including
the start state, M visits |x| + 1 states while reading x. Because of
|x| > |Q| at least one state has to be visited twice.

| A\

\

Pumping Lemma Summary

00008000000

Pumping Lemma: Proof

Theorem (Pumping Lemma)
Let L be a regular language. Then there is an n € N
(a pumping number for L) such that all words x € L with |x| > n
can be split into x = uvw with the following properties:
Q |v|>1,
@ |uv| < n, and
Q@ wiwel foralli=0,1,2,....

| A\

Proof (continued).

Choose a split x = uvw so M is in the same state after reading u
and after reading uv. Obviously, we can choose the split in a way
that |[v| > 1 and |uv| < | Q)] are satisfied.

N

Pumping Lemma Summary

00008000000

Pumping Lemma: Proof

Theorem (Pumping Lemma)
Let L be a regular language. Then there is an n € N
(a pumping number for L) such that all words x € L with |x| > n
can be split into x = uvw with the following properties:
Q |v|>1,
@ |uv| < n, and
Q@ wiwel foralli=0,1,2,....

| A\

Proof (continued).

The word v corresponds to a loop in the DFA after reading u and
can thus be repeated arbitrarily often. Every subsequent
continuation with w ends in the same end state as reading x.
Therefore uv'w € L(M) = L is satisfied for all i = 0,1,2,.... [

v

Pumping Lemma Summar

0O0000e00000

Pumping Lemma: Application

Using the pumping lemma (PL):

Proof of Nonregularity

m If L is regular, then the pumping lemma holds for L.

m By contraposition: if the PL does not hold for L,
then L cannot be regular.

m That is: if there is no n € N with the properties of the PL,
then L cannot be regular.

Pumping Lemma

00000080000

Pumping Lemma: Caveat

Caveat:
The pumping lemma is a necessary condition for a language
to be regular, but not a sufficient one.

~> there are languages that satisfy the pumping lemma
conditions but are not regular

~ for such languages, other methods are needed to show
that they are not regular (e.g., the Myhill-Nerode theorem)

Pumping Lemma Summary

0O000000e000

Pumping Lemma: Example

The language L = {a"b" | n € N} is not regular. I

Proof.
Assume L is regular. Then let p be a pumping number for L.

The word x = aPb” is in L and has length > p.
Let x = uvw be a split with the properties of the PL.

Then the word x’ = uv2w is also in L. Since |uv| < p, uv consists

only of symbols a and x’ = altla2lVlaP—luvipp = aPtivipe,
Since |v| > 1 it follows that p + |v| # p and thus x" ¢ L.

This is a contradiction to the PL. ~» L is not regular. Ol

Pumping Lemma Summary

00000000800

Pumping Lemma: Another Example |

The language L = {ab"ac"*? | n € N} is not regular. l

Proof.
Assume L is regular. Then let p be a pumping number for L.

The word x = abPacP*? is in L and has length > p.

Let x = uvw be a split with the properties of the PL.

From |uv| < p and |v| > 1 we know that uv consists of one a
followed by at most p — 1 bs.

We distinguish two cases, |u| =0 and |u| > 0.

Pumping Lemma Summary

00000000080

Pumping Lemma: Another Example I

The language L = {ab"ac"™"? | n € N} is not regular.

Proof (continued).

If |u| =0, then word v starts with an a.

Hence, uv®w = bP~1¥I+1acP*2 does not start with symbol a
and is therefore not in L. This is a contradiction to the PL.

If |u| > 0, then word v consists only of bs.

Consider uv®w = abP~"lacP*2. As |v| > 1, this word does not
contain two more cs than bs and is therefore not in language L.
This is a contradiction to the PL.

We have in all cases a contradiction to the PL.
~» L is not regular. [

Pumping Lemma

0000000000 e

Questions

N

00

~

Questions?

[Je]

Summary

Summary

oe

Summary

m Regular expressions are another way to describe languages.

m All regular languages can be described by regular expressions,
and all regular expressions describe regular languages.

m Hence, they are equivalent to finite automata.

m The pumping lemma can be used to show
that a language is not regular.

	Regular Expressions
	Pumping Lemma
	Summary

