Theory of Computer Science
C2. Regular Languages: Finite Automata

Gabriele Roger

University of Basel

March 20, 2019



Regular Grammars
00000

Regular Grammars



Regular Grammars
00000

Overview
B Languages -

& Grammars
—  DFAs |

L g

| Regular
Expressions
| Context-free Pumping
Languages — Lemma
L Minimal
| Context-sensitive & Automata
Loy e —| Properties




Regular Grammars As As Summary

[e]e] le]e}

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (¥, V, P, S) with
© X finite alphabet of terminals
Q V finite set of variables (with VNE = ()
Q@ PC (VX (XZUXV))U{(S,e)} finite set of rules
Q@ ifS—>ece P, thereisnoX eV, ye¥XwithX —>ySeP
© S € V start variable.
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Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (¥, V, P, S) with
© X finite alphabet of terminals
Q V finite set of variables (with VNE = ()
Q@ PC (VX (XZUXV))U{(S.e)} finite set of rules
Q@ ifS—c€ P, thereisno X € V,y e ¥ with X — ySe€P
© S € V start variable.

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.
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Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (¥, V, P, S) with
© X finite alphabet of terminals
Q V finite set of variables (with VNE = ()
Q@ PC (VX (XZUXV))U{(S.e)} finite set of rules
Q@ ifS—c€ P, thereisno X € V,y e ¥ with X — ySe€P
© S € V start variable.

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.
How restrictive is this?
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Epsilon Rules

For every grammar G with rules P C V x (X UXZV U {e})
there is a regular grammar G' with L(G) = L(G").
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Epsilon Rules

For every grammar G with rules P C V x (X UXZV U {e})
there is a regular grammar G' with L(G) = L(G").

Proof.
Let G=(X,V,P,S) be a grammars.t. PC V x (XUXV U{e}).
Let V.={AeV]|A—ceP}

| A\
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Epsilon Rules

For every grammar G with rules P C V x (X UXZV U {e})
there is a regular grammar G’ with L(G) = L(G)

Proof.

Let G=(X,V,P,S) be a grammars.t. PC V x (XUXV U{e}).
Let V.={AeV]|A—ceP}

Let P’ be the rule set that is created from P by removing all rules

of the form A — ¢ (A # S). Additionally, for every rule of the form
B — xAwith Ae V., Be V,x € X we add arule B— x to P'.

| A\




Regular Grammars As As Summary

[e]e]e] o}

Epsilon Rules

For every grammar G with rules P C V x (X UXZV U {e})
there is a regular grammar G' with L(G) = L(G').

| A\

Proof (continued).

Then £L(G) = L((X,V,P',S)) and

P’ contains no rule A — & with A # S.
If S — e & P, we are done.
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Epsilon Rules

For every grammar G with rules P C V x (X UXZV U {e})
there is a regular grammar G' with L(G) = L(G').

| A\

Proof (continued).

Then £L(G) = L((X,V,P',S)) and
P’ contains no rule A — & with A # S.
If S — e & P, we are done.

Otherwise, let S’ be a new variable and construct P” from P’ by
© replacing rules X — aS where X € V,a € ¥ with X — a5/,

@ for every rule S — aX where X € V,ae ¥
adding the rule S’ — aX, and

© for every rule S — a where a € ¥ adding the rule S’ — a.
Then L(G) = L((X,VU{S'}, P".S)). O

v
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
qo,
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
qo.
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
do, 91,
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
qo. g1,



lar Grammars DFAs s Summar

0O0e0000000

Finite Automata: Example

When reading the input 01100 the automaton visits the states
do. 91, qo,
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
do. 91, 4o,
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
qo, 91, qo, qo,
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
do, 91, 90, qo.
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
qo, q1, Go, qo, g1,
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
do. g1, 9o, 9o, q1,
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
qo, 91, qo, qo, g1, G2-
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Finite Automata: Terminology and Notation
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Finite Automata: Terminology and Notation

m states Q = {qo, g1, g2}
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Finite Automata: Terminology and Notation

m states Q = {qo, g1, 92}
m input alphabet ¥ = {0,1}
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m states Q = {qo, 91, 92} (g0, 0) = 1
m input alphabet ¥ = {0,1} (q0,1) = qo
® transition function ¢ 5(q1,0) = q2



ular Grammars

DFAs
[eleTe] YoloToleTele]

m states Q@ = {qo, g1, g2}
m input alphabet ¥ = {0,1}

m transition function 9

6q0a0 =aq
6(]0,1 =4qo
9(q1,0) = q2

table form of §



ular Grammars DFAs

0O00@000000

m states Q = {qo, 91, @2} 4(qo 0)

m input alphabet ¥ = {0, 1} 5(qo0,1)

m transition function § 6(q1,0)

m start state qo 6(q1,1) = qo
(g2,0)
(q2,1)

table form of §
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m states Q = {qo, 91, 92} (g0, 0) = q1
m input alphabet ¥ = {0, 1} 4(qo. 1) = qo
m transition function § 6(q1,0) = g2
m start state qo 6(q1,1) = qo table form of &
m end states {q2} 3(g2,0) = q2
6(q2,1) = qo
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Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple
M =(Q,X,d,qo, E) where

Q is the finite set of states

Y is the input alphabet (with Q N X = ()

0: Q X X — Q is the transition function

go € Q is the start state

E C Q@ is the set of end states

German: deterministischer endlicher Automat, Zustande,
Eingabealphabet, Uberfiihrungs-/Ubergangsfunktion,

Startzustand, Endzustinde
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DFA: Recognized Words

Definition (Words Recognized by a DFA)

DFA M = (Q, %, 4, qo, E) recognizes the word w = a3 ... a,
if there is a sequence of states qp, ..., q), € Q with

Q g5 = q.

Q 0(q)_,a;)) =g forallie{l,...,n} and

Q g, cE

German: DFA erkennt das Wort
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DFA: Recognized Words

Definition (Words Recognized by a DFA)

DFA M = (Q, %, 4, qo, E) recognizes the word w = a3 ... a,
if there is a sequence of states qp, ..., q), € Q with

Q g5 = q.

Q (q,_q,a;)) =g forall i e {1,...,n} and

Q qg,cE.

German: DFA erkennt das Wort

recognizes: does not recognize:

1 (1)8010100 ioo1o1o

01000 010001




DFA: Accepted Language

Definition (Language Accepted by a DFA)

Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M) ={w € £* | w is recognized by M}.
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Definition (Language Accepted by a DFA)

Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M) ={w € £* | w is recognized by M}.
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DFA: Accepted Language

Definition (Language Accepted by a DFA)

Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M) ={w € £* | w is recognized by M}.

The DFA accepts the language
(=)o {w € {0,1}* | w ends with 00}.
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Languages Accepted by DFAs are Regular

Every language accepted by a DFA is regular (type 3). I
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Languages Accepted by DFAs are Regular

Every language accepted by a DFA is regular (type 3). |

Proof.

Let M = (Q, %, 9, qo, E) be a DFA.
We define a regular grammar G with £(G) = L(M).

Define G = (X, Q, P, qo) where P contains
m arule g — aq’ for every 6(q,a) = ¢/, and

m arule g — ¢ for every g € E.

(We can eliminate forbidden epsilon rules
as described at the start of the chapter.)
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Languages Accepted by DFAs are Regular

Every language accepted by a DFA is regular (type 3). |

Proof (continued).

For every w = a1a>...a, € ¥*:

w e L(M)
iff there is a sequence of states qg, g1, .. ., q), with

9h = qo, g, € E and 6(q'_;,a;) = ¢ forall i € {1,...,n}
iff there is a sequence of variables qg, qi, . . ., g}, with

qp is start variable and we have g = ai1q] = a1a2q5 =
ce = 2132...3pQ, = aiaz...an.

iff w € L(G) O
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Languages Accepted by DFAs are Regular

Every language accepted by a DFA is regular (type 3). |

Proof (continued).

For every w = a1a>...a, € ¥*:

w e L(M)
iff there is a sequence of states qg, g1, .. ., q), with

9h = qo, g, € E and 6(q'_;,a;) = ¢ forall i € {1,...,n}
iff there is a sequence of variables qg, qi, . . ., g}, with

qp is start variable and we have g = ai1q] = a1a2q5 =
ce = 2132...3pQ, = aiaz...an.

iff w € L(G) O

Example: blackboard
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N
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Is the inverse true as well:
for every regular language, is there a
DFA that accepts it? That is, are the
languages accepted by DFAs exactly the
regular languages?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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Question

N

Zaa

Is the inverse true as well:
for every regular language, is there a
DFA that accepts it? That is, are the
languages accepted by DFAs exactly the
regular languages?

Yes!
We will prove this later (via a detour).

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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Nondeterministic Finite Automata

Why are DFAs called
deterministic automata? What are
nondeterministic automata,
then?

Picture courtesy of stockimages / FreeDigitalPhotos.net
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Nondeterministic Finite Automata: Example

0,1

|

differences to DFAs:
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Nondeterministic Finite Automata: Example

0,1

|

differences to DFAs:

m multiple start states possible
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Nondeterministic Finite Automata: Example

0,1

|

differences to DFAs:

m multiple start states possible

m transition function § can lead to
zero or more successor states for the same a € X
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Nondeterministic Finite Automata: Example

0,1

|

differences to DFAs:

m multiple start states possible

m transition function § can lead to
zero or more successor states for the same a € X

m automaton recognizes a word if there is
at least one accepting sequence of states



r Grammars D NFAs Summary
o] 0000@e00000000 [e]e)

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M= (Q,%,9,S, E) where

m Q is the finite set of states

m Y is the input alphabet (with @ NX = 0)

mJ: QxX — P(Q) is the transition function
(mapping to the power set of Q)

m S C Q is the set of start states
m E C Q@ is the set of end states

German: nichtdeterministischer endlicher Automat



lar Grammars NFAs Summary
o} [o]e] 0000@e00000000 [e]e)

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M= (Q,%,9,S, E) where

m Q is the finite set of states

m Y is the input alphabet (with @ NX = 0)

m):QxX — P(Q) is the transition function
(mapping to the power set of Q)

m S C Q is the set of start states
m E C Q@ is the set of end states

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.
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Definition (Words Recognized by an NFA)
NFA M = (Q,%,6,S, E) recognizes the word w = a3 ... a,
if there is a sequence of states g, ..., q, € Q with

Q@ qp€S,

Q@ g €0(q._4,a;) forallie{l,...,n} and

Q@ q,cE.
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Definition (Words Recognized by an NFA)

NFA M = (Q,%,6,S, E) recognizes the word w = a3 ... a,
if there is a sequence of states g, ..., q, € Q with
Q@ qp€S,
Q@ ¢ €d(q_4,a;) forallie{l,...,n} and
Q q,cE.
0.5 } recognizes: does not recognize:
0 €
o /N o
& N\ @ 10010100 1001010
U 01000 010001




Regular Grammars As NFAs Summar
o¢ 0000000000 0000008000000 0o

Definition (Language Accepted by an NFA)

Let M = (Q,%,9,S, E) be a nondeterministic finite automaton.
The language accepted by M is defined as
L(M) ={w € £* | w is recognized by M}.
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Definition (Language Accepted by an NFA)
Let M = (Q,%,6,S, E) be a nondeterministic finite automaton.

The language accepted by M is defined as
L(M) ={w € £* | w is recognized by M}.
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Definition (Language Accepted by an NFA)
Let M = (Q,%,6,S, E) be a nondeterministic finite automaton.

The language accepted by M is defined as
L(M) ={w € £* | w is recognized by M}.

E% ' The NFA accepts the language
()t (3)  weloi|w=oor
: / O w ends with 00}.
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.




Reg

Grammars As NFAs Summary
0000000000 00000000 e0000 [e]e)

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof.
For every NFA M = (Q, X%, 6, S, E) we can construct
a DFA M' =(Q', %, ¢, qp, E') with L(M) = L(M').
Here M’ is defined as follows:

B Q :=7P(Q) (the power set of Q)

mqy=S

mE={QCQ|QNE#D}

m Forall Qe Q" §(Q,a):= U d(q, a)

qeQ

N,
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NFAs are No More Powerful than DFAs

Grammars

Summary

Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).

For every w = a1a>...a, € &*:
w e L(M)
iff there is a sequence of states qg, g1, ..., g, with
Go €S, qn € E and g; € 6(qgj_1,a;) forall i € {1,...,n}
iff there is a sequence of subsets Qgp, 91, ..., 9, with
Qo =qy, Qn € E and §'(Qj_1,a;) = Q; forall i € {1,...,n}
iff w e L(M') O

N,
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).
For every w = a1a>...a, € &*:

w e L(M)

iff there is a sequence of states qo, q1, . . .
aj) forall i e {1,...,

G €S, gn € E and g; € 6(qi—1,

iff there is a sequence of subsets Qgp, 9, ...,
Q; forallie{l,...,

Qo =qy, Qn € E' and §'(Qj_1,a;) =
iff w € L(M')

, gn With

Q, with

n}

n}

N,

Example: blackboard
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NFAs are More Co

mpact than DFAs

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.
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NFAs are More Co

mpact than DFAs

Example

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Lx can be accepted by an NFA with k + 1 states:




ular Grammars DFAs NFAs Summary
0000000000 ) 0000000008000 00

mpact than DFAs

NFAs are More Co

Example

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Lx can be accepted by an NFA with k + 1 states:

0,1

O N T 0,1 O

—( % q 9 9k
6 / N

There is no DFA with less than 2% states that accepts Ly
(without proof).
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NFAs are More Compact than DFAs

Example

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Lx can be accepted by an NFA with k + 1 states:

0,1

O N T 0,1 O

—( % q 9 9k
6 / N

There is no DFA with less than 2% states that accepts Ly
(without proof).

NFAs can often represent languages more compactly than DFAs.
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Regular Grammars are No More Powerful than NFAs

For every regular grammar G there is an NFA M
with £(G) = L(M).
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Regular Grammars are No More Powerful than NFAs

For every regular grammar G there is an NFA M
with £(G) = L(M).

| A\

Proof.
Let G = (X, V,P,S) be a regular grammar.
Define NFA M = (Q, X%, 6,5, E) with

Q=VU{X}, X¢gV
s'={s}
E:{{S,X} ifS—seecP
(X} #fS—oecdP
Bed(Aa)ifA—aBeP
Xed(Aa)ifA—-acP

N

Grammars As NFAs Summary
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Regular Grammars are No More Powerful than NFAs

For every regular grammar G there is an NFA M
with £(G) = L(M).

\

Proof (continued).

For every w = a1ay...a, € ¥* with n > 1:

w e L(G)
iff there is a sequence on variables A;, Ay, ..., A,_1 with
S = 1Al = a1a0A = - = a1a2...ap-1An—1 = 3132 ... a,.
iff there is a sequence of variables A1, Ay, ..., A,_1 with
A € 5(5,31),/\2 € 5(A1, 32), o, XE 6(A,,_1,a,,).
iff w € L(M).

Case w = ¢ is also covered because S € E iff S — ¢ € P. ]
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Finite Automata and Regular Languages

regular grammar

DFA NFA

In particular, this implies:

L regular <> L is accepted by a DFA.
L regular <= L is accepted by an NFA.
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Summary

m We now know three formalisms that all

describe exactly the regular languages:

regular grammars, DFAs and NFAs
m We will get to know a fourth formalism in the next chapter.
m DFAs are automata where every state transition

is uniquely determined.

m NFAs recognize a word if there is at least one
accepting sequence of states.
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