Theory of Computer Science
C2. Regular Languages: Finite Automata

Gabriele Roger

University of Basel

March 20, 2019

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 1/32

Theory of Computer Science
March 20, 2019 — C2. Regular Languages: Finite Automata

C2.1 Regular Grammars

C2.2 DFAs
C2.3 NFAs

C2.4 Summary

Gabriele Réger (University of Basel)

Theory of Computer Science

March 20, 2019

2/32

C2. Regular Languages: Finite Automata Regular Grammars

C2.1 Regular Grammars

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 3/32

C2. Regular Languages: Finite Automata

Overview

Languages
& Grammars

Context-free
Languages

Context-sensitive &
Type-0 Languages

Gabriele Réger (University of Basel)

Theory of Computer Science

Regular Grammars

DFAs

NFAs

Regular
Expressions

Pumping
Lemma

Minimal
Automata

Properties

March 20, 2019

4/32

C2. Regular Languages: Finite Automata Regular Grammars

Repetition: Regular Grammars

Definition (Regular Grammars)
A regular grammar is a 4-tuple (X, V, P, S) with
@ X finite alphabet of terminals
@ V finite set of variables (with V NX = ()
Q@ PC(VXx(ZUXV))U{(S,e)} finite set of rules
Q@ ifS—cecP,thereisno X e V,yec¥XwithX —->ySecP
@ S € V start variable.

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.
How restrictive is this?

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 5 /32

C2. Regular Languages: Finite Automata

Epsilon Rules

Theorem
For every grammar G with rules P C V x (XU XV U{e})
there is a regular grammar G' with L(G) = L(G").

Proof.
Let G = (X, V,P,S) beagrammarst. PC V x (XUXV U{e}).
Let V.i={Ac V|A—ce P}

Let P’ be the rule set that is created from P by removing all rules
of the form A — ¢ (A # S). Additionally, for every rule of the form
B — xAwith Ae V.,,Be V,x€ X weadd a rule B— x to P'.

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019

6/

Regular Grammars

32

C2. Regular Languages: Finite Automata Regular Grammars

Epsilon Rules

Theorem
For every grammar G with rules P C V x (XU XV U{e})
there is a regular grammar G' with L(G) = L(G").

Proof (continued).

Then L(G) = L((X, V,P',S)) and

P’ contains no rule A — ¢ with A # S.
If S— e ¢ P, we are done.

Otherwise, let S’ be a new variable and construct P” from P’ by
Q replacing rules X — aS where X € V,a € ¥ with X — a$5’,
@ for every rule S — aX where X € V,ae X

adding the rule S’ — aX, and
© for every rule S — a where a € ¥ adding the rule S’ — a.
Then L(G) = L((X,VU{S'},P",S)). O

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 7/ 32

C2. Regular Languages: Finite Automata

C2.2 DFAs

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019

8 /

DFAs

32

C2. Regular Languages: Finite Automata DFAs

Overview

Regular
Languages Grammars

& Grammars

-
L Regular
Expressions

i Context-free Blimping

Languages] Lemma

L Minimal

| Context-sensitive & Automata
Ll s

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 9 /32

C2. Regular Languages: Finite Automata DFAs

Finite Automata: Example

When reading the input 01100 the automaton visits the states
do. 91, 9o, 90, 91, 92

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 10 / 32

C2. Regular Languages: Finite Automata DFAs

Finite Automata: Terminology and Notation

1 ¢ 1
OSmOs :
0

» states Q@ = {qo, 91, 2} 5(q0,0) = q1
» input alphabet ¥ = {0,1} (g0, 1) = qo
» transition function § 6(q1,0) = 2

0(q1,1) =
> start state qo (g1,1) = qo table form of §
» end states {qo} 5(92,0) = q2

6(q2,1) = qo

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 11 /32

C2. Regular Languages: Finite Automata DFAs

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)
A deterministic finite automaton (DFA) is a 5-tuple
M=(Q,%,0d,qo, E) where

> Q@ is the finite set of states

» Y is the input alphabet (with Q N X =)

> 0: @ XX — Q is the transition function

> qo € Q is the start state

» E C Q is the set of end states

German: deterministischer epdlicher Autom.:.at, Zustande,
Eingabealphabet, Uberfiihrungs-/Ubergangsfunktion,

Startzustand, Endzustande

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 12 / 32

C2. Regular Languages: Finite Automata

DFA: Recognized Words

Definition (Words Recognized by a DFA)
DFA M = (Q, X, 4, qo, E) recognizes the word w = a3 ... a,

if there is a sequence of states g, ..., q), € Q with

Q 9 = qo.

Q@ i(q)_y,a))=q; forallie{1,...,n} and

Q g,cE.
German: DFA erkennt das Wort
Example

0 . .
. v . recognizes: does not recognize:
00 €
()= .:‘31 10010100 1001010

5 01000 010001

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019

DFAs

13 / 32

C2. Regular Languages: Finite Automata DFAs

DFA: Accepted Language

Definition (Language Accepted by a DFA)
Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M)={w € X*| w is recognized by M}.

Example

0
1 v 1

The DFA accepts the language
1 {w € {0,1}* | w ends with 00}.

[

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 14 / 32

C2. Regular Languages: Finite Automata

Languages Accepted by DFAs are Regular

Theorem
Every language accepted by a DFA is regular (type 3).

Proof.
Let M =(Q,X,d, qo, E) be a DFA.
We define a regular grammar G with £(G) = L(M).
Define G = (X, Q, P, go) where P contains
» arule g — aq’ for every 6(qg,a) = ¢, and
> arule g — ¢ forevery g € E.

(We can eliminate forbidden epsilon rules
as described at the start of the chapter.)

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019

DFAs

15 / 32

C2. Regular Languages: Finite Automata DFAs

Languages Accepted by DFAs are Regular

Theorem
Every language accepted by a DFA is regular (type 3).

Proof (continued).
For every w = ajay...a, € L™
w € L(M)
iff there is a sequence of states g, qi, .. ., g}, with
g = qo0, 9, € E and 6(q._;,a;) = g forall i € {1,...,n}
iff there is a sequence of variables qg, qi, ..., g}, with

qp is start variable and we have qj = a1q] = a1a2q5 =
co- = 3132...anq, = 3132...an.

iff w e L(G) O
Example: blackboard

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 16 / 32

C2. Regular Languages: Finite Automata

Question

Gabriele Roger (University of Basel)

DFAs

_— TN —
ya V4 \\ Ve N

—/ N 4 \ ——
y § VN

\

1 Is the inverse true as well: —

1 for every regular language, is there a !

. DFA that accepts it? That is, are the

_languages accepted by DFAs exactly the |
i regular languages? B

;\\\7// /\ /\ /\ ;7/// /

Yes!
We will prove this later (via a detour).

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Theory of Computer Science March 20, 2019 17 / 32

C2. Regular Languages: Finite Automata

Overview

Gabriele Réger (University of Basel)

NFAs

Regular

Languages
& Grammars

Grammars

Regular
Expressions

Context-free Pumping
Languages — Lemma
. Minimal
Context-sensitive & Automata
Typerd Languages

Theory of Computer Science March 20, 2019 19 / 32

C2. Regular Languages: Finite Automata NFAs
Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 18 / 32
C2. Regular Languages: Finite Automata NFAs
Nondeterministic Finite Automata
N NV L
e ~/ VTN
/" Why are DFAs called
/" deterministic automata? What are
e <
(nondeterministic automata,)
s then?) O
— \ /“ o =
\\7 //\\ ///\\ 7//\\ 4
Picture courtesy of stockimages / FreeDigitalPhotos.net
Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 20 / 32

C2. Regular Languages: Finite Automata NFAs

Nondeterministic Finite Automata: Example

0,1

|

differences to DFAs:

» multiple start states possible

» transition function ¢ can lead to
zero or more successor states for the same a € &

> automaton recognizes a word if there is
at least one accepting sequence of states

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 21 / 32

C2. Regular Languages: Finite Automata

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)
A nondeterministic finite automaton (NFA) is a 5-tuple
M=(Q,X%,0,S,E) where
> Q@ is the finite set of states
» ¥ is the input alphabet (with Q VX = ()
» §:Q x X — P(Q) is the transition function
(mapping to the power set of Q)

> S C Q is the set of start states
» E C Q@ is the set of end states

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.

NFAs

C2. Regular Languages: Finite Automata NFAs

NFA: Recognized Words

Definition (Words Recognized by an NFA)
NFA M = (Q,X%,4,S, E) recognizes the word w = a3 ... a,

if there is a sequence of states q, ..., q), € Q with
Q@ €S,
Q@ ¢/ (gl q,a) forallie{l,...,n}and
Q g, cE.
Example
0.1 . recognizes: does not recognize:
0 €
o /N o
C% N @ 10010100 1001010
) 01000 010001

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 23 /32

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 22 / 32
C2. Regular Languages: Finite Automata NFAs
NFA: Accepted Language
Definition (Language Accepted by an NFA)
Let M =(Q,%,6,S, E) be a nondeterministic finite automaton.
The language accepted by M is defined as
L(M) ={w € * | w is recognized by M}.
Example
CO% v The NFA accepts the language
@ 0 ()20 - {we{0,1}*|w=0or
~ O w ends with 00}.
Theory of Computer Science March 20, 2019 24 / 32

Gabriele Réger (University of Basel)

C2. Regular Languages: Finite Automata

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.

Proof.

For every NFA M = (Q,%,0, S, E) we can construct
a DFA M’ = (Q',%, 5", ¢}, E') with L(M) = L(M").
Here M’ is defined as follows:

» Q' :=P(Q) (the power set of Q)
» g, =S
» E':={QCQ|QNE#(}

Forall Q € Q": 0'(Q,a) := | d(q,a)
qeQ

NFAs

C2. Regular Languages: Finite Automata

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).
For every w = ajay...a, € £*:

w € L(M)
iff there is a sequence of states qo, 91, ..., g, with
G €S, gn € E and q; € 6(qgj—1,a;) for all i € {1,...,n}
iff there is a sequence of subsets Qq, 91, ..., D, with
Qo=qp Qn€ E and §'(Qj_1,a;)) = Q, forallie {1,...,n}
iff w e L(M') O

Example: blackboard

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019

NFAs

26 / 32

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 25 / 32
C2. Regular Languages: Finite Automata NFAs
NFAs are More Compact than DFAs
Example
For k > 1 consider the language
Ly ={w € {0,1}* | |[w| > k and the k-th last symbol of w is 0}.
The language L, can be accepted by an NFA with k + 1 states:
01
0 /N 01 /N 0l 0,1 O
—(9 7! a2 qk
& \Z/ \/
There is no DFA with less than 2X states that accepts L
(without proof).
NFAs can often represent languages more compactly than DFAs.
Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 27 / 32

C2. Regular Languages: Finite Automata

Regular Grammars are No More Powerful than NFAs

Theorem
For every regular grammar G there is an NFA M
with L(G) = L(M).

Proof.
Let G = (X, V,P,S) be a regular grammar.
Define NFA M = (Q,X,6,5', E) with

Q=VU{X}, X¢gV
s’ ={s}
E:{{S,X} ifS—seeP
(X} ifS—egP
Bed(Aa)if A aBeP
X ecd(Aa)ifA—acP

Gabriele Roger (University of Basel) Theory of Computer Science

NFAs

28 / 32

C2. Regular Languages: Finite Automata

Regular Grammars are No More Powerful than NFAs

Theorem
For every regular grammar G there is an NFA M
with L(G) = L(M).

Proof (continued).
For every w = a1a>...a, € X* with n > 1:
w e L(G)

iff there is a sequence on variables A, As, ..., Ap_1 with

S=aAi = a1aA = - = 313y ... ap_1An_1 = 3132 ... ap.

iff there is a sequence of variables A;, Ay, ..., A1 with
Al € (5(5,31),/42 € 5(A1,32), X E 6(A,,_1,a,,).

iff w e L(M).

Case w = ¢ is also covered because S € E iff S — ¢ € P.

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019

29 /

NFAs

32

C2. Regular Languages: Finite Automata

Finite Automata and Regular Languages

regular grammar

DFA NFA

In particular, this implies:

Corollary
L regular <= L is accepted by a DFA.
L regular < L is accepted by an NFA.

Gabriele Roger (University of Basel) Theory of Computer Science

March 20, 2019 30 /

NFAs

32

C2. Regular Languages: Finite Automata

C2.4 Summary

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019

Summary

31/

C2. Regular Languages: Finite Automata Summary

Summary

» We now know three formalisms that all
describe exactly the regular languages:
regular grammars, DFAs and NFAs

> We will get to know a fourth formalism in the next chapter.

» DFAs are automata where every state transition
is uniquely determined.

» NFAs recognize a word if there is at least one
accepting sequence of states.

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 32

/ 32

	Regular Grammars
	DFAs
	NFAs
	Summary

