

Theory of Computer Science

C2. Regular Languages: Finite Automata

Gabriele Röger

University of Basel

March 20, 2019

Theory of Computer Science

March 20, 2019 — C2. Regular Languages: Finite Automata

C2.1 Regular Grammars

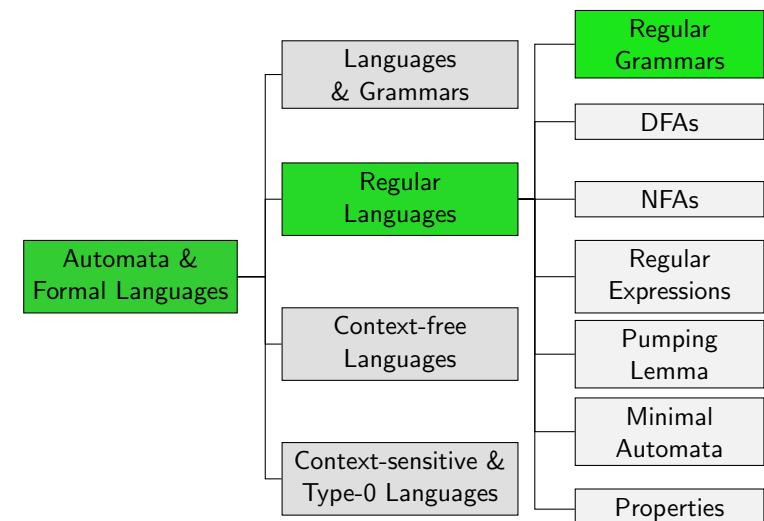
C2.2 DFAs

C2.3 NFAs

C2.4 Summary

C2.1 Regular Grammars

Overview



Repetition: Regular Grammars

Definition (Regular Grammars)

A regular **grammar** is a 4-tuple $\langle \Sigma, V, P, S \rangle$ with

- ❶ Σ finite alphabet of terminals
- ❷ V finite set of variables (with $V \cap \Sigma = \emptyset$)
- ❸ $P \subseteq (V \times (\Sigma \cup \Sigma V)) \cup \{\langle S, \varepsilon \rangle\}$ finite set of rules
- ❹ if $S \rightarrow \varepsilon \in P$, there is no $X \in V, y \in \Sigma$ with $X \rightarrow yS \in P$
- ❺ $S \in V$ start variable.

Rule $X \rightarrow \varepsilon$ is only allowed if $X = S$ and
 S never occurs in the right-hand side of a rule.

How restrictive is this?

Epsilon Rules

Theorem

For every grammar G with rules $P \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$
there is a regular grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof.

Let $G = \langle \Sigma, V, P, S \rangle$ be a grammar s.t. $P \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$.
Let $V_\varepsilon = \{A \in V \mid A \rightarrow \varepsilon \in P\}$.

Let P' be the rule set that is created from P by removing all rules
of the form $A \rightarrow \varepsilon$ ($A \neq S$). Additionally, for every rule of the form
 $B \rightarrow xA$ with $A \in V_\varepsilon, B \in V, x \in \Sigma$ we add a rule $B \rightarrow x$ to P' .

...

Epsilon Rules

Theorem

For every grammar G with rules $P \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$
there is a regular grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof (continued).

Then $\mathcal{L}(G) = \mathcal{L}(\langle \Sigma, V, P', S \rangle)$ and

P' contains no rule $A \rightarrow \varepsilon$ with $A \neq S$.

If $S \rightarrow \varepsilon \notin P$, we are done.

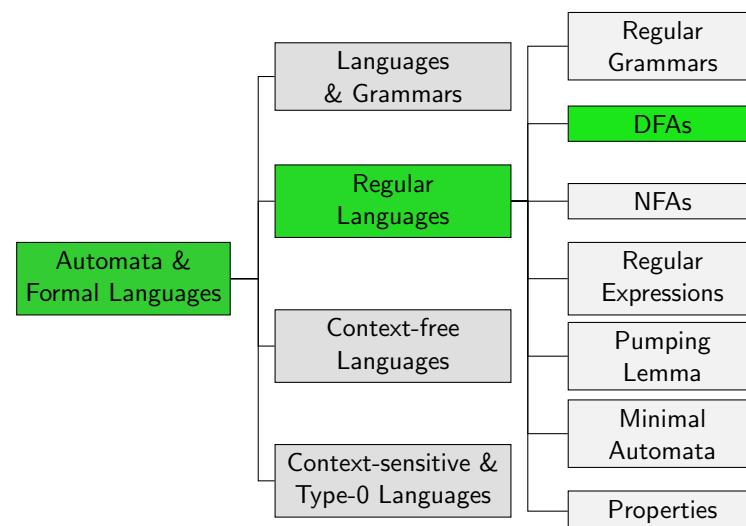
Otherwise, let S' be a new variable and construct P'' from P' by

- ❶ replacing rules $X \rightarrow aS$ where $X \in V, a \in \Sigma$ with $X \rightarrow aS'$,
- ❷ for every rule $S \rightarrow aX$ where $X \in V, a \in \Sigma$
adding the rule $S' \rightarrow aX$, and
- ❸ for every rule $S \rightarrow a$ where $a \in \Sigma$ adding the rule $S' \rightarrow a$.

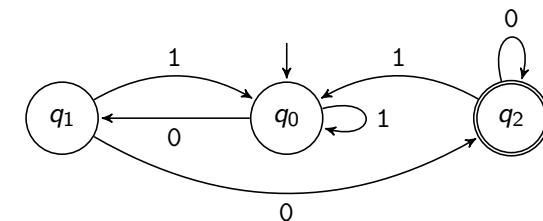
Then $\mathcal{L}(G) = \mathcal{L}(\langle \Sigma, V \cup \{S'\}, P'', S \rangle)$. □

C2.2 DFAs

Overview

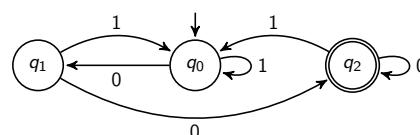


Finite Automata: Example



When reading the input 01100 the automaton visits the states $q_0, q_1, q_0, q_0, q_1, q_2$.

Finite Automata: Terminology and Notation



- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$
- transition function δ
- start state q_0
- end states $\{q_2\}$

$$\begin{aligned}\delta(q_0, 0) &= q_1 \\ \delta(q_0, 1) &= q_2 \\ \delta(q_1, 0) &= q_2 \\ \delta(q_1, 1) &= q_0 \\ \delta(q_2, 0) &= q_2 \\ \delta(q_2, 1) &= q_0\end{aligned}$$

δ	0	1
q_0	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_0

table form of δ

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A **deterministic finite automaton (DFA)** is a 5-tuple $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ where

- Q is the finite set of **states**
- Σ is the **input alphabet** (with $Q \cap \Sigma = \emptyset$)
- $\delta : Q \times \Sigma \rightarrow Q$ is the **transition function**
- $q_0 \in Q$ is the **start state**
- $E \subseteq Q$ is the set of **end states**

German: deterministischer endlicher Automat, Zustände, Eingabealphabet, Überführungs-/Übergangsfunktion, Startzustand, Endzustände

DFA: Recognized Words

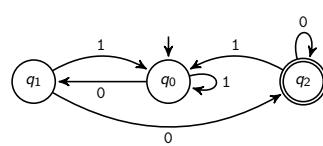
Definition (Words Recognized by a DFA)

DFA $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ **recognizes the word** $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with

- ① $q'_0 = q_0$,
- ② $\delta(q'_{i-1}, a_i) = q'_i$ for all $i \in \{1, \dots, n\}$ and
- ③ $q'_n \in E$.

German: DFA erkennt das Wort

Example



recognizes:

00

10010100

01000

does not recognize:

ϵ

1001010

010001

DFA: Accepted Language

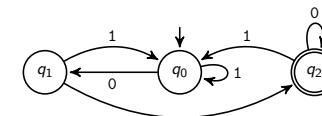
Definition (Language Accepted by a DFA)

Let M be a deterministic finite automaton.

The **language accepted by M** is defined as

$$\mathcal{L}(M) = \{w \in \Sigma^* \mid w \text{ is recognized by } M\}.$$

Example



The DFA accepts the language $\{w \in \{0, 1\}^* \mid w \text{ ends with } 00\}$.

Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Proof.

Let $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ be a DFA.

We define a regular grammar G with $\mathcal{L}(G) = \mathcal{L}(M)$.

Define $G = \langle \Sigma, Q, P, q_0 \rangle$ where P contains

- ▶ a rule $q \rightarrow aq'$ for every $\delta(q, a) = q'$, and
- ▶ a rule $q \rightarrow \epsilon$ for every $q \in E$.

(We can eliminate forbidden epsilon rules as described at the start of the chapter.)

...

Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Proof (continued).

For every $w = a_1 a_2 \dots a_n \in \Sigma^*$:

$$w \in \mathcal{L}(M)$$

iff there is a sequence of states q'_0, q'_1, \dots, q'_n with $q'_0 = q_0, q'_n \in E$ and $\delta(q'_{i-1}, a_i) = q'_i$ for all $i \in \{1, \dots, n\}$

iff there is a sequence of variables q'_0, q'_1, \dots, q'_n with q'_0 is start variable and we have $q'_0 \Rightarrow a_1 q'_1 \Rightarrow a_1 a_2 q'_2 \Rightarrow \dots \Rightarrow a_1 a_2 \dots a_n q'_n \Rightarrow a_1 a_2 \dots a_n$.

$$w \in \mathcal{L}(G)$$

□

Example: blackboard

Question

Is the inverse true as well:
for every regular language, is there a
DFA that accepts it? That is, are the
languages accepted by DFAs **exactly** the
regular languages?

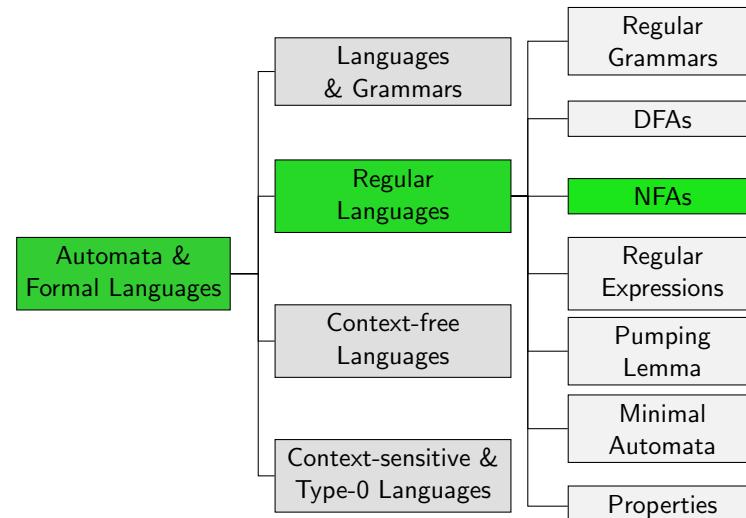
Yes!

We will prove this later (via a detour).

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

C2.3 NFAs

Overview

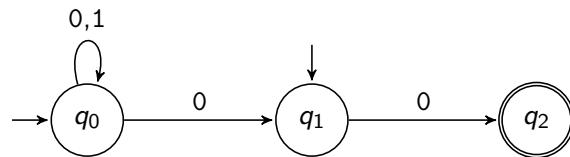


Nondeterministic Finite Automata

Why are DFAs called
deterministic automata? What are
nondeterministic automata,
then?

Picture courtesy of stockimages / FreeDigitalPhotos.net

Nondeterministic Finite Automata: Example



differences to DFAs:

- ▶ multiple start states possible
- ▶ transition function δ can lead to zero or more successor states for the same $a \in \Sigma$
- ▶ automaton recognizes a word if there is at least one accepting sequence of states

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A **nondeterministic finite automaton (NFA)** is a 5-tuple $M = \langle Q, \Sigma, \delta, S, E \rangle$ where

- ▶ Q is the finite set of **states**
- ▶ Σ is the **input alphabet** (with $Q \cap \Sigma = \emptyset$)
- ▶ $\delta : Q \times \Sigma \rightarrow \mathcal{P}(Q)$ is the transition function (mapping to the **power set** of Q)
- ▶ $S \subseteq Q$ is the set of **start states**
- ▶ $E \subseteq Q$ is the set of **end states**

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.

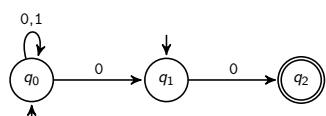
NFA: Recognized Words

Definition (Words Recognized by an NFA)

NFA $M = \langle Q, \Sigma, \delta, S, E \rangle$ **recognizes the word** $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with

- ① $q'_0 \in S$,
- ② $q'_i \in \delta(q'_{i-1}, a_i)$ for all $i \in \{1, \dots, n\}$ and
- ③ $q'_n \in E$.

Example



recognizes:

0
10010100
01000

does not recognize:

ϵ
1001010
010001

NFA: Accepted Language

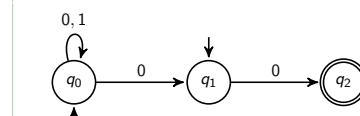
Definition (Language Accepted by an NFA)

Let $M = \langle Q, \Sigma, \delta, S, E \rangle$ be a nondeterministic finite automaton.

The **language accepted by M** is defined as

$$\mathcal{L}(M) = \{w \in \Sigma^* \mid w \text{ is recognized by } M\}.$$

Example



The NFA accepts the language $\{w \in \{0, 1\}^* \mid w = 0 \text{ or } w \text{ ends with } 00\}$.

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof.

For every NFA $M = \langle Q, \Sigma, \delta, S, E \rangle$ we can construct a DFA $M' = \langle Q', \Sigma, \delta', q'_0, E' \rangle$ with $\mathcal{L}(M) = \mathcal{L}(M')$. Here M' is defined as follows:

- ▶ $Q' := \mathcal{P}(Q)$ (the power set of Q)
- ▶ $q'_0 := S$
- ▶ $E' := \{Q \subseteq Q \mid Q \cap E \neq \emptyset\}$
- ▶ For all $Q \in Q'$: $\delta'(Q, a) := \bigcup_{q \in Q} \delta(q, a)$

...

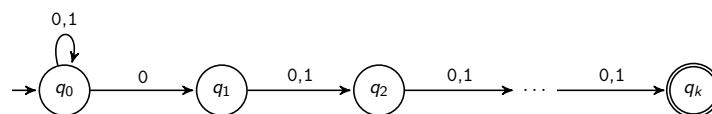
NFAs are More Compact than DFAs

Example

For $k \geq 1$ consider the language

$$L_k = \{w \in \{0, 1\}^* \mid |w| \geq k \text{ and the } k\text{-th last symbol of } w \text{ is } 0\}.$$

The language L_k can be accepted by an NFA with $k + 1$ states:



There is no DFA with less than 2^k states that accepts L_k (without proof).

NFAs can often represent languages more compactly than DFAs.

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).

For every $w = a_1 a_2 \dots a_n \in \Sigma^*$:

$$w \in \mathcal{L}(M)$$

iff there is a sequence of states q_0, q_1, \dots, q_n with
 $q_0 \in S$, $q_n \in E$ and $q_i \in \delta(q_{i-1}, a_i)$ for all $i \in \{1, \dots, n\}$

iff there is a sequence of subsets Q_0, Q_1, \dots, Q_n with
 $Q_0 = q'_0$, $Q_n \in E'$ and $\delta'(Q_{i-1}, a_i) = Q_i$ for all $i \in \{1, \dots, n\}$
iff $w \in \mathcal{L}(M')$ □

Example: blackboard

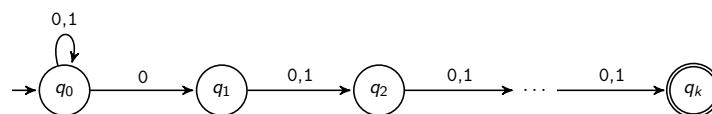
NFAs are More Compact than DFAs

Example

For $k \geq 1$ consider the language

$$L_k = \{w \in \{0, 1\}^* \mid |w| \geq k \text{ and the } k\text{-th last symbol of } w \text{ is } 0\}.$$

The language L_k can be accepted by an NFA with $k + 1$ states:



There is no DFA with less than 2^k states that accepts L_k (without proof).

NFAs can often represent languages more compactly than DFAs.

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M with $\mathcal{L}(G) = \mathcal{L}(M)$.

Proof.

Let $G = \langle \Sigma, V, P, S \rangle$ be a regular grammar.

Define NFA $M = \langle Q, \Sigma, \delta, S', E \rangle$ with

$$Q = V \cup \{X\}, \quad X \notin V$$

$$S' = \{S\}$$

$$E = \begin{cases} \{S, X\} & \text{if } S \rightarrow \varepsilon \in P \\ \{X\} & \text{if } S \rightarrow \varepsilon \notin P \end{cases}$$

$$B \in \delta(A, a) \text{ if } A \rightarrow aB \in P$$

$$X \in \delta(A, a) \text{ if } A \rightarrow a \in P$$

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M with $\mathcal{L}(G) = \mathcal{L}(M)$.

Proof (continued).

For every $w = a_1 a_2 \dots a_n \in \Sigma^*$ with $n \geq 1$:

$w \in \mathcal{L}(G)$

iff there is a sequence on variables A_1, A_2, \dots, A_{n-1} with

$$S \Rightarrow a_1 A_1 \Rightarrow a_1 a_2 A_2 \Rightarrow \dots \Rightarrow a_1 a_2 \dots a_{n-1} A_{n-1} \Rightarrow a_1 a_2 \dots a_n.$$

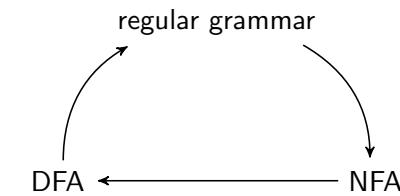
iff there is a sequence of variables A_1, A_2, \dots, A_{n-1} with

$$A_1 \in \delta(S, a_1), A_2 \in \delta(A_1, a_2), \dots, A_{n-1} \in \delta(A_{n-1}, a_n).$$

iff $w \in \mathcal{L}(M)$.

Case $w = \varepsilon$ is also covered because $S \in E$ iff $S \rightarrow \varepsilon \in P$. □

Finite Automata and Regular Languages



In particular, this implies:

Corollary

\mathcal{L} regular $\iff \mathcal{L}$ is accepted by a DFA.

\mathcal{L} regular $\iff \mathcal{L}$ is accepted by an NFA.

C2.4 Summary

Summary

- ▶ We now know **three formalisms** that all **describe exactly the regular languages**: regular grammars, DFAs and NFAs
- ▶ We will get to know a fourth formalism in the next chapter.
- ▶ **DFAs** are automata where **every state transition is uniquely determined**.
- ▶ **NFAs** recognize a word if there is **at least one accepting sequence of states**.