
Theory of Computer Science
C2. Regular Languages: Finite Automata

Gabriele Röger

University of Basel

March 20, 2019

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 1 / 32

Theory of Computer Science
March 20, 2019 — C2. Regular Languages: Finite Automata

C2.1 Regular Grammars

C2.2 DFAs

C2.3 NFAs

C2.4 Summary

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 2 / 32

C2. Regular Languages: Finite Automata Regular Grammars

C2.1 Regular Grammars

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 3 / 32

C2. Regular Languages: Finite Automata Regular Grammars

Overview

Automata &
Formal Languages

Languages
& Grammars

Regular
Languages

Regular
Grammars

DFAs

NFAs

Regular
Expressions

Pumping
Lemma

Minimal
Automata

Properties

Context-free
Languages

Context-sensitive &
Type-0 Languages

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 4 / 32

C2. Regular Languages: Finite Automata Regular Grammars

Repetition: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple 〈Σ,V ,P, S〉 with

1 Σ finite alphabet of terminals

2 V finite set of variables (with V ∩ Σ = ∅)
3 P ⊆ (V × (Σ ∪ ΣV)) ∪ {〈S , ε〉} finite set of rules

4 if S → ε ∈ P, there is no X ∈ V , y ∈ Σ with X → yS ∈ P

5 S ∈ V start variable.

Rule X → ε is only allowed if X = S and
S never occurs in the right-hand side of a rule.
How restrictive is this?

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 5 / 32

C2. Regular Languages: Finite Automata Regular Grammars

Epsilon Rules

Theorem

For every grammar G with rules P ⊆ V × (Σ ∪ ΣV ∪ {ε})
there is a regular grammar G ′ with L(G) = L(G ′).

Proof.

Let G = 〈Σ,V ,P,S〉 be a grammar s.t. P ⊆ V × (Σ ∪ ΣV ∪ {ε}).
Let Vε = {A ∈ V | A→ ε ∈ P}.
Let P ′ be the rule set that is created from P by removing all rules
of the form A→ ε (A 6= S). Additionally, for every rule of the form
B → xA with A ∈ Vε,B ∈ V , x ∈ Σ we add a rule B → x to P ′.

. . .

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 6 / 32

C2. Regular Languages: Finite Automata Regular Grammars

Epsilon Rules

Theorem

For every grammar G with rules P ⊆ V × (Σ ∪ ΣV ∪ {ε})
there is a regular grammar G ′ with L(G) = L(G ′).

Proof (continued).

Then L(G) = L(〈Σ,V ,P ′,S〉) and
P ′ contains no rule A→ ε with A 6= S .
If S → ε 6∈ P, we are done.

Otherwise, let S ′ be a new variable and construct P ′′ from P ′ by

1 replacing rules X → aS where X ∈ V , a ∈ Σ with X → aS ′,

2 for every rule S → aX where X ∈ V , a ∈ Σ
adding the rule S ′ → aX , and

3 for every rule S → a where a ∈ Σ adding the rule S ′ → a.

Then L(G) = L(〈Σ,V ∪ {S ′},P ′′,S〉).

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 7 / 32

C2. Regular Languages: Finite Automata DFAs

C2.2 DFAs

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 8 / 32

C2. Regular Languages: Finite Automata DFAs

Overview

Automata &
Formal Languages

Languages
& Grammars

Regular
Languages

Regular
Grammars

DFAs

NFAs

Regular
Expressions

Pumping
Lemma

Minimal
Automata

Properties

Context-free
Languages

Context-sensitive &
Type-0 Languages

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 9 / 32

C2. Regular Languages: Finite Automata DFAs

Finite Automata: Example

q0q1 q2
0

1

0

1

0

1

When reading the input 01100 the automaton visits the states
q0, q1, q0, q0, q1, q2.

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 10 / 32

C2. Regular Languages: Finite Automata DFAs

Finite Automata: Terminology and Notation

q0q1 q2
0

1

0

1

0

1

I states Q = {q0, q1, q2}
I input alphabet Σ = {0, 1}
I transition function δ

I start state q0
I end states {q2}

δ(q0, 0) = q1

δ(q0, 1) = q0

δ(q1, 0) = q2

δ(q1, 1) = q0

δ(q2, 0) = q2

δ(q2, 1) = q0

δ 0 1

q0 q1 q0
q1 q2 q0
q2 q2 q0

table form of δ

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 11 / 32

C2. Regular Languages: Finite Automata DFAs

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple
M = 〈Q,Σ, δ, q0,E 〉 where

I Q is the finite set of states

I Σ is the input alphabet (with Q ∩ Σ = ∅)
I δ : Q × Σ→ Q is the transition function

I q0 ∈ Q is the start state

I E ⊆ Q is the set of end states

German: deterministischer endlicher Automat, Zustände,
German: Eingabealphabet, Überführungs-/Übergangsfunktion,

German: Startzustand, Endzustände

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 12 / 32

C2. Regular Languages: Finite Automata DFAs

DFA: Recognized Words

Definition (Words Recognized by a DFA)

DFA M = 〈Q,Σ, δ, q0,E 〉 recognizes the word w = a1 . . . an
if there is a sequence of states q′0, . . . , q

′
n ∈ Q with

1 q′0 = q0,

2 δ(q′i−1, ai) = q′i for all i ∈ {1, . . . , n} and

3 q′n ∈ E .

German: DFA erkennt das Wort

Example

q0q1 q2
0

1

0

1

0

1
recognizes:
00

10010100

01000

does not recognize:
ε
1001010

010001

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 13 / 32

C2. Regular Languages: Finite Automata DFAs

DFA: Accepted Language

Definition (Language Accepted by a DFA)

Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M) = {w ∈ Σ∗ | w is recognized by M}.

Example

q0q1 q2
0

1

0

1

0

1
The DFA accepts the language
{w ∈ {0, 1}∗ | w ends with 00}.

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 14 / 32

C2. Regular Languages: Finite Automata DFAs

Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Proof.

Let M = 〈Q,Σ, δ, q0,E 〉 be a DFA.
We define a regular grammar G with L(G) = L(M).

Define G = 〈Σ,Q,P, q0〉 where P contains

I a rule q → aq′ for every δ(q, a) = q′, and

I a rule q → ε for every q ∈ E .

(We can eliminate forbidden epsilon rules
as described at the start of the chapter.) . . .

Example: blackboard

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 15 / 32

C2. Regular Languages: Finite Automata DFAs

Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)

iff there is a sequence of states q′0, q
′
1, . . . , q

′
n with

iff q′0 = q0, q′n ∈ E and δ(q′i−1, ai) = q′i for all i ∈ {1, . . . , n}
iff there is a sequence of variables q′0, q

′
1, . . . , q

′
n with

iff q′0 is start variable and we have q′0 ⇒ a1q
′
1 ⇒ a1a2q

′
2 ⇒

iff · · · ⇒ a1a2 . . . anq
′
n ⇒ a1a2 . . . an.

iff w ∈ L(G)

Example: blackboard

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 16 / 32

C2. Regular Languages: Finite Automata DFAs

Question

Is the inverse true as well:
for every regular language, is there a
DFA that accepts it? That is, are the

languages accepted by DFAs exactly the
regular languages?

Yes!
We will prove this later (via a detour).

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 17 / 32

C2. Regular Languages: Finite Automata NFAs

C2.3 NFAs

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 18 / 32

C2. Regular Languages: Finite Automata NFAs

Overview

Automata &
Formal Languages

Languages
& Grammars

Regular
Languages

Regular
Grammars

DFAs

NFAs

Regular
Expressions

Pumping
Lemma

Minimal
Automata

Properties

Context-free
Languages

Context-sensitive &
Type-0 Languages

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 19 / 32

C2. Regular Languages: Finite Automata NFAs

Nondeterministic Finite Automata

Why are DFAs called
deterministic automata? What are

nondeterministic automata,
then?

Picture courtesy of stockimages / FreeDigitalPhotos.net

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 20 / 32

C2. Regular Languages: Finite Automata NFAs

Nondeterministic Finite Automata: Example

q0 q1 q2
0

0,1

0

differences to DFAs:

I multiple start states possible

I transition function δ can lead to
zero or more successor states for the same a ∈ Σ

I automaton recognizes a word if there is
at least one accepting sequence of states

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 21 / 32

C2. Regular Languages: Finite Automata NFAs

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M = 〈Q,Σ, δ, S ,E 〉 where

I Q is the finite set of states

I Σ is the input alphabet (with Q ∩ Σ = ∅)
I δ : Q × Σ→ P(Q) is the transition function

(mapping to the power set of Q)

I S ⊆ Q is the set of start states

I E ⊆ Q is the set of end states

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 22 / 32

C2. Regular Languages: Finite Automata NFAs

NFA: Recognized Words

Definition (Words Recognized by an NFA)

NFA M = 〈Q,Σ, δ,S ,E 〉 recognizes the word w = a1 . . . an
if there is a sequence of states q′0, . . . , q

′
n ∈ Q with

1 q′0 ∈ S ,

2 q′i ∈ δ(q′i−1, ai) for all i ∈ {1, . . . , n} and

3 q′n ∈ E .

Example

q0 q1 q2
0

0,1

0

recognizes:
0

10010100

01000

does not recognize:
ε
1001010

010001

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 23 / 32

C2. Regular Languages: Finite Automata NFAs

NFA: Accepted Language

Definition (Language Accepted by an NFA)

Let M = 〈Q,Σ, δ,S ,E 〉 be a nondeterministic finite automaton.
The language accepted by M is defined as
L(M) = {w ∈ Σ∗ | w is recognized by M}.

Example

q0 q1 q2
0

0, 1

0

The NFA accepts the language
{w ∈ {0, 1}∗ | w = 0 or
{w ∈ {0, 1}∗ | w ends with 00}.

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 24 / 32

C2. Regular Languages: Finite Automata NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof.

For every NFA M = 〈Q,Σ, δ, S ,E 〉 we can construct
a DFA M ′ = 〈Q ′,Σ, δ′, q′0,E ′〉 with L(M) = L(M ′).
Here M ′ is defined as follows:

I Q ′ := P(Q) (the power set of Q)

I q′0 := S

I E ′ := {Q ⊆ Q | Q ∩ E 6= ∅}
I For all Q ∈ Q ′: δ′(Q, a) :=

⋃
q∈Q

δ(q, a)

. . .

Example: blackboard

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 25 / 32

C2. Regular Languages: Finite Automata NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)
iff there is a sequence of states q0, q1, . . . , qn with
iff q0 ∈ S , qn ∈ E and qi ∈ δ(qi−1, ai) for all i ∈ {1, . . . , n}
iff there is a sequence of subsets Q0,Q1, . . . ,Qn with
iff Q0 = q′0, Qn ∈ E ′ and δ′(Qi−1, ai) = Qi for all i ∈ {1, . . . , n}
iff w ∈ L(M ′)

Example: blackboard

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 26 / 32

C2. Regular Languages: Finite Automata NFAs

NFAs are More Compact than DFAs

Example

For k ≥ 1 consider the language
Lk = {w ∈ {0, 1}∗ | |w | ≥ k and the k-th last symbol of w is 0}.
The language Lk can be accepted by an NFA with k + 1 states:

q0 q1 q2 . . . qk
0

0,1

0,1 0,1 0,1

There is no DFA with less than 2k states that accepts Lk
(without proof).

NFAs can often represent languages more compactly than DFAs.

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 27 / 32

C2. Regular Languages: Finite Automata NFAs

Regular Grammars are No More Powerful than NFAs

Theorem
For every regular grammar G there is an NFA M
with L(G) = L(M).

Proof.

Let G = 〈Σ,V ,P, S〉 be a regular grammar.
Define NFA M = 〈Q,Σ, δ,S ′,E 〉 with

Q = V ∪ {X}, X 6∈ V

S ′ = {S}

E =

{
{S ,X} if S → ε ∈ P

{X} if S → ε 6∈ P

B ∈ δ(A, a) if A→ aB ∈ P

X ∈ δ(A, a) if A→ a ∈ P

. . .
Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 28 / 32

C2. Regular Languages: Finite Automata NFAs

Regular Grammars are No More Powerful than NFAs

Theorem
For every regular grammar G there is an NFA M
with L(G) = L(M).

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗ with n ≥ 1:

w ∈ L(G)

iff there is a sequence on variables A1,A2, . . . ,An−1 with
iff S ⇒ a1A1 ⇒ a1a2A2 ⇒ · · · ⇒ a1a2 . . . an−1An−1 ⇒ a1a2 . . . an.

iff there is a sequence of variables A1,A2, . . . ,An−1 with
iff A1 ∈ δ(S , a1),A2 ∈ δ(A1, a2), . . . ,X ∈ δ(An−1, an).

iff w ∈ L(M).

Case w = ε is also covered because S ∈ E iff S → ε ∈ P.

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 29 / 32

C2. Regular Languages: Finite Automata NFAs

Finite Automata and Regular Languages

DFA

regular grammar

NFA

In particular, this implies:

Corollary

L regular ⇐⇒ L is accepted by a DFA.
L regular ⇐⇒ L is accepted by an NFA.

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 30 / 32

C2. Regular Languages: Finite Automata Summary

C2.4 Summary

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 31 / 32

C2. Regular Languages: Finite Automata Summary

Summary

I We now know three formalisms that all
describe exactly the regular languages:
regular grammars, DFAs and NFAs

I We will get to know a fourth formalism in the next chapter.

I DFAs are automata where every state transition
is uniquely determined.

I NFAs recognize a word if there is at least one
accepting sequence of states.

Gabriele Röger (University of Basel) Theory of Computer Science March 20, 2019 32 / 32

	Regular Grammars
	DFAs
	NFAs
	Summary

