Theory of Computer Science
C2. Regular Languages: Finite Automata

Gabriele Roger
University of Basel

March 20, 2019

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019

1/32

Theory of Computer Science
March 20, 2019 — C2. Regular Languages: Finite Automata

C2.1 Regular Grammars
C2.2 DFAs

C2.3 NFAs

C2.4 Summary

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 2/32

C2. Regular Languages: Finite Automata Regular Grammars

C2.1 Regular Grammars

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 3/32

C2. Regular Languages: Finite Automata Regular Grammars

Overview

Languages
& Grammars

— DFAs |
— NFAs |

- Regular
Expressions
i Context-free Pumping
Languages Bl Lemma
] Minimal
Context-sensitive & Automata
Type-0 Languages _| Properties

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 4 /32

C2. Regular Languages: Finite Automata Regular Grammars

Repetition: Regular Grammars

Definition (Regular Grammars)
A regular grammar is a 4-tuple (X, V, P, S) with
Q X finite alphabet of terminals
@ V finite set of variables (with VNE = ()
Q@ PC(Vx(XUXV))U{(S,e)} finite set of rules
Q@ ifS—ce P, thereisno X € V,y e X with X - yS5€P
© S € V start variable.

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.
How restrictive is this?

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 5 /32

C2. Regular Languages: Finite Automata Regular Grammars

Epsilon Rules

Theorem

For every grammar G with rules P C V x (XUXV U{e})
there is a regular grammar G' with L(G) = L(G').

Proof.
Let G =(X,V,P,S) be a grammars.t. PC V x (XUXV U{e}).
Let V. ={AeV|A—ce P}

Let P’ be the rule set that is created from P by removing all rules
of the form A — ¢ (A # S). Additionally, for every rule of the form
B —+ xAwithAe V.,Be V,x€X we add a rule B— x to P’.

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 6 /32

C2. Regular Languages: Finite Automata Regular Grammars

Epsilon Rules

Theorem
For every grammar G with rules P C V x (XUXV U{e})
there is a regular grammar G' with L(G) = L(G').

Proof (continued).

Then £L(G) = L((X,V,P',S)) and

P’ contains no rule A — ¢ with A # S.
If S— e & P, we are done.

Otherwise, let S’ be a new variable and construct P” from P’ by
@ replacing rules X — aS where X € V,a € ¥ with X — a5/,

@ for every rule S — aX where X € V,ae ¥
adding the rule S’ — aX, and

© for every rule S — a where a € ¥ adding the rule S’ — a.
Then £(G) = L((X, VU{S'}, P".S)). O

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 7 /32

C2. Regular Languages: Finite Automata DFAs

C2.2 DFAs

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 8 /32

C2. Regular Languages: Finite Automata DFAs

Overview

Regular
Languages Grammars

& Grammars
— NFAs |

- Regular
Expressions
i Context-free Pumping
Languages Bl Lemma
] Minimal
Context-sensitive & Automata
Type-0 Languages _| Properties

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 9 /32

C2. Regular Languages: Finite Automata

Finite Automata: Example

When reading the input 01100 the automaton visits the states
do, 91, 9o, qo. 41, G2-

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 10 / 32

C2. Regular Languages: Finite Automata DFAs

Finite Automata: Terminology and Notation

R
OSmOt :
0

> states Q = {qo, 91, g2} 6(q0,0) = q1
> input alphabet ¥ = {0,1} 9(q0,1) = o
> transition function § 6(q1,0) = q2
> start state qgo 6(q1,1) = qo table form of §
» end states {q2} 9(g2,0) = g2

6(q2a 1) = qo

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 11 /32

C2. Regular Languages: Finite Automata DFAs

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)
A deterministic finite automaton (DFA) is a 5-tuple
M ={(Q,X,d,qo, E) where

> Q is the finite set of states

» ¥ is the input alphabet (with Q N X = ()

» 0:Q XX — Q is the transition function

> go € Q is the start state

» E C Q is the set of end states

German: deterministischer e_pdlicher Autom"at, Zustande,
Eingabealphabet, Uberfiihrungs-/Ubergangsfunktion,

Startzustand, Endzustande

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 12 / 32

C2. Regular Languages: Finite Automata

DFA: Recognized Words

Definition (Words Recognized by a DFA)

DFA M = (Q, %, 6, qo, E) recognizes the word w = a3 ... a,
if there is a sequence of states qp, ..., q), € Q with

Q@ 9, = qo,

@ 6(qj_y,a7) = g; for all i € {1,..., n} and

Q@ g, cE

German: DFA erkennt das Wort

Example
s v . 2 recognizes:
00
(2)— .31 10010100

01000

Gabriele Roger (University of Basel) Theory of Computer Science

does not recognize:
€

1001010

010001

March 20, 2019

DFAs

13 /32

C2. Regular Languages: Finite Automata

DFA: Accepted Language

Definition (Language Accepted by a DFA)
Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M)={w € £* | w is recognized by M}.

Example

0
1 v 1

The DFA accepts the language
1 {w € {0,1}* | w ends with 00}.

0

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019

DFAs

14 /32

C2. Regular Languages: Finite Automata DFAs

Languages Accepted by DFAs are Regular

Theorem
Every language accepted by a DFA is regular (type 3).

Proof.
Let M = (Q, %, 9, qo, E) be a DFA.
We define a regular grammar G with £(G) = L(M).
Define G = (X, Q, P, qo) where P contains
» arule g — aqg’ for every 6(g,a) = ¢', and
> arule g — ¢ forevery g € E.

(We can eliminate forbidden epsilon rules
as described at the start of the chapter.)

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 15 / 32

C2. Regular Languages: Finite Automata DFAs

Languages Accepted by DFAs are Regular

Theorem
Every language accepted by a DFA is regular (type 3).

Proof (continued).
For every w = a1a>...a, € ¥*:

w e L(M)
iff there is a sequence of states qg, g1, .. ., q), with

g = qo, q, € E and 6(q}_;,a;) =g} forallie{1,...,n}
iff there is a sequence of variables qg, g1, .. ., g;, with

qp is start variable and we have g = ai1q] = a1a2q5 =
o= 2132...apq, = 3132 ... ap.

iff w € £(G) O

Example: blackboard

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 16 / 32

C2. Regular Languages: Finite Automata

Question

Is the inverse true as well:
for every regular language, is there a
DFA that accepts it? That is, are the
languages accepted by DFAs exactly the
regular languages?

Yes!
We will prove this later (via a detour).

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019

DFAs

17 / 32

C2. Regular Languages: Finite Automata NFAs

C2.3 NFAs

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 18 / 32

C2. Regular Languages: Finite Automata NFAs

Overview

Regular
Languages Grammars

& Grammars
— DFAs |

- Regular
Expressions
i Context-free Pumping
Languages Bl Lemma
] Minimal
Context-sensitive & Automata
Type-0 Languages _| Properties

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 19 / 32

C2. Regular Languages: Finite Automata NFAs

Nondeterministic Finite Automata

TN S NN
/ AV4 \/ AN

/ \

/" Whyare DFAs called
(deterministic automata? What are
nondeterministic automata,

s then? Ji e -

Picture courtesy of stockimages / FreeDigitalPhotos.net

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 20 / 32

C2. Regular Languages: Finite Automata

Nondeterministic Finite Automata: Example

0,1

|

differences to DFAs:
» multiple start states possible

» transition function ¢ can lead to
zero or more successor states for the same a € X

» automaton recognizes a word if there is
at least one accepting sequence of states

Gabriele Roger (University of Basel) Theory of Computer Science

March 20, 2019

NFAs

21 /32

C2. Regular Languages: Finite Automata NFAs

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)
A nondeterministic finite automaton (NFA) is a 5-tuple
M= (Q,%,,S, E) where

> (@ is the finite set of states

» Y is the input alphabet (with Q VX =)

d:Q x X — P(Q) is the transition function
(mapping to the power set of Q)

> S C Q@ is the set of start states
» E C Q@ is the set of end states

v

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 22 /32

C2. Regular Languages: Finite Automata NFAs

NFA: Recognized Words

Definition (Words Recognized by an NFA)
NFA M = (Q,%,6,S, E) recognizes the word w = a3 ... a,

if there is a sequence of states g, ..., q, € Q with
Q@ qy€S.
Q@ ¢ €4(ql_4,a) forallie{1,...,n} and
Q@ q,€E.
Example
01 . recognizes: does not recognize:
0 €
a0 —2 > (o —2 @
) 10010100 1001010
0 01000 010001

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 23 /32

C2. Regular Languages: Finite Automata

NFA: Accepted Language

Definition (Language Accepted by an NFA)

Let M = (Q,%,6,S, E) be a nondeterministic finite automaton.
The language accepted by M is defined as
L(M) ={w € £* | w is recognized by M}.

Example
“ v The NFA accepts the language
C% 0 @ 0 @ {we{0,1}* |w=0or

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019

w ends with 00}.

NFAs

24 /32

C2. Regular Languages: Finite Automata NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.

Proof.
For every NFA M = (Q,X%,4,S, E) we can construct
a DFA M' = (Q', %, &, g, E') with L(M) = L(M').
Here M’ is defined as follows:

» Q' :="P(Q) (the power set of Q)

> qp:=S

» B/ ={QCQ|QNE#0}

» Forall Qe Q" §(Q,a) .= U d(q,a)

qeQ

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 25 /32

C2. Regular Languages: Finite Automata NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).
For every w = a1ay...a, € ¥*:

w e L(M)
iff there is a sequence of states qg, g1, ..., g, with
G €S, qn € E and g € 6(qi—1,a;) forall i € {1,...,n}
iff there is a sequence of subsets Qgp, 91, ..., Q, with
Qo =qy Qn € E and §'(Qj_1,a;) = Q; forall i € {1,...,n}
iff w e L(M") O

Example: blackboard

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 26 / 32

C2. Regular Languages: Finite Automata NFAs

NFAs are More Compact than DFAs

Example
For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Ly can be accepted by an NFA with k 4 1 states:

0,1
0 /N 01 /N 0t 0,1 Q
—>(4o q1 g2 Ik
& \/ \/

There is no DFA with less than 2% states that accepts Ly
(without proof).

NFAs can often represent languages more compactly than DFAs.

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 27 / 32

C2. Regular Languages: Finite Automata NFAs

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G) = L(M).

Proof.
Let G = (X, V,P,S) be a regular grammar.
Define NFA M = (Q, ¥, 5, ', E) with

RQ=VU{X}, XgV
s'={s}
E:{{S,X} ifS—secP
{X} ifS—edgP
Bed(Aa)ifA—»aBeP
X ed(Aa)if A»acP

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 28 / 32

C2. Regular Languages: Finite Automata NFAs

Regular Grammars are No More Powerful than NFAs

Theorem
For every regular grammar G there is an NFA M
with L(G) = L(M).

Proof (continued).
For every w = a1ay...a, € ¥* with n > 1:

w e L(G)
iff there is a sequence on variables A;, Ao, ..., A,_1 with
S = a1A1 = a1a0A = - = a1ar...a,-1An_1 = a1a2... an.
iff there is a sequence of variables Ay, Ay, ..., A,_1 with
A € 5(5,31),/42 S 5(A1, 32), L XE 5(A,,,1,a,,).
iff w € L(M).
Case w = ¢ is also covered because S € Eiff S ¢ € P. O

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 29 / 32

C2. Regular Languages: Finite Automata

Finite Automata and Regular Languages

regular grammar

DFA NFA

In particular, this implies:

Corollary
L regular <= L is accepted by a DFA.
L regular <= L is accepted by an NFA.

Gabriele Roger (University of Basel) Theory of Computer Science

March 20, 2019

NFAs

30 /32

C2. Regular Languages: Finite Automata Summary

C2.4 Summary

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 31 /32

C2. Regular Languages: Finite Automata Summary

Summary

» We now know three formalisms that all
describe exactly the regular languages:
regular grammars, DFAs and NFAs

» We will get to know a fourth formalism in the next chapter.

» DFAs are automata where every state transition
is uniquely determined.

» NFAs recognize a word if there is at least one
accepting sequence of states.

Gabriele Roger (University of Basel) Theory of Computer Science March 20, 2019 32 /32

	Regular Grammars
	DFAs
	NFAs
	Summary

