Theory of Computer Science
C1. Formal Languages and Grammars
Gabriele Roger

University of Basel

March 18, 2019

Gabriele Roger (University of Basel) Theory of Computer Science

March 18, 2019

1

/ 24

Theory of Computer Science
March 18, 2019 — C1. Formal Languages and Grammars

C1.1 Introduction

C1.2 Alphabets and Formal Languages

C1.3 Grammars

C1.4 Chomsky Hierarchy

C1.5 Summary

Gabriele Roger (University of Basel)

Theory of Computer Science

March 18, 2019

2/

24

C1. Formal Languages and Grammars

C1.1 Introduction

Gabriele Roger (University of Basel) Theory of Computer Science

Introduction

March 18, 2019

3/

C1. Formal Languages and Grammars

Course Contents

Parts of the course:

A.

Gabriele Réger (University of Basel)

background v/
> mathematical foundations and proof techniques
logic (Logik) v/
> How can knowledge be represented?
How can reasoning be automated?

automata theory and formal languages
(Automatentheorie und formale Sprachen)
> What is a computation?

Turing computability (Turing-Berechenbarkeit)
> What can be computed at all?

complexity theory (Komplexitatstheorie)
> What can be computed efficiently?

. more computability theory (mehr Berechenbarkeitheorie)

> Other models of computability

Theory of Computer Science

Introduction

March 18, 2019 4/

24

C1. Formal Languages and Grammars

Example: Propositional Formulas

from the logic part:

Definition (Syntax of Propositional Logic)
Let A be a set of atomic propositions. The set of propositional
formulas (over A) is inductively defined as follows:

>

>

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 5/

Every atom a € A is a propositional formula over A.

If © is a propositional formula over A,

then so is its negation —.

If ¢ and v are propositional formulas over A,
then so is the conjunction (¢ A 7).

If © and v are propositional formulas over A,
then so is the disjunction (¢ V).

Introduction

24

C1. Formal Languages and Grammars Introduction

Example: Propositional Formulas

Let S be the set of all propositional formulas over A.
Such sets of symbol sequences (or words) are called languages.

Sought: General concepts to define such (often infinite) languages
with finite descriptions.

» today: grammars

» |ater: automata

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 6 /24

C1. Formal Languages and Grammars

Example: Propositional Formulas

Example (Grammar for S¢, 4 c1)

Grammar variables {F, A, N, C, D} with start variable F,
terminal symbols {a,b,c,—, A, V, (,)} and rules

F—A A—a N — —F
F— N A—b C— (FAF)
F—C A—c D— (FVF)
F—D

Start with F. In each step, replace a left-hand side of a rule

with its right-hand side until no more variables are left:

F=N=-F=-D=-(FVF)=-(AVF) = -(bVF)
= -(bVA)=-(Vc)

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 7/

Introduction

24

C1. Formal Languages and Grammars Alphabets and Formal Languages

C1.2 Alphabets and Formal
Languages

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 8 /24

C1. Formal Languages and Grammars Alphabets and Formal Languages C1. Formal Languages and Grammars Alphabets and Formal Languages

Alphabets and Formal Languages Languages: Examples

Definition (Alphabets, Words and Formal Languages)

An alphabet ¥ is a finite non-empty set of symbols.
Example (Languages over ¥ = {a, b})
A word over ¥ is a finite sequence of elements from ¥.

_ » 5 = {a,aa,aaa aaaa,... } = {a}"
The empty word (the empty sequence of elements) is denoted by &.

N oF

> * denotes the set of all words over %. > 2=1
— nyn —
Y (= X*\ {e}) denotes the set of all non-empty words over ¥. > 53 ={a™" | n > 0} = {¢, ab, aabb, aaabbb, ...}
We write |w| for the length of a word w. > 5= (;6}
A formal language (over alphabet ¥) is a subset of ¥*. . .
guage (P) » Sp = {w € £* | w contains twice as many as as bs}
German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache = {6, aab, aba, baa,... }
Example > Si={weT| W =3)
¥ — {a,b} = {aaa, aab, aba, baa, bba, bab, abb, bbb}
-)

Y* ={e,a,b,aa, ab,ba,bb,...}
laba] = 3,|p| =1,]¢| =0

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 9 /24 Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 10 / 24
C1. Formal Languages and Grammars Grammars C1. Formal Languages and Grammars Grammars
Grammars

Definition (Grammars)
A grammar is a 4-tuple (X, V, P, S) with:

C13 Gram mars © X finite alphabet of terminal symbols
@ V finite set of variables (nonterminal symbols)
with VNX =10

Q@ PC(VUX)T x (VUI)* finite set of rules (or productions)
Q S € V start variable

German: Grammatik, Terminalalphabet, Variablen, Regeln/Produktionen,
Startvariable

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 11 / 24 Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 12 / 24

C1. Formal Languages and Grammars Grammars

Rule Sets

What exactly does P C (VU X)" x (VUX)* mean?
» (VUX)*: all words over (VUX)

» (VUZX)": all non-empty words over (V U X)
in general, for set X: Xt = X*\ {¢}

» x: Cartesian product

» (VUX)T x (VUX)*: set of all pairs (x,y), where x
non-empty word over (V UX) and y word over (V UX)

> Instead of (x,y) we usually write rules in the form x — y.

C1. Formal Languages and Grammars Grammars

Rules: Examples

Example
Let ¥ = {a,b,c} and V = {X,Y,Z}.

Some examples of rules in (V UX)T x (VUX)*:

X — XaY
Yb — a
XY — ¢

XYZ — abc
abc — XYZ

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 14 / 24

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 13 / 24
C1. Formal Languages and Grammars Grammars
Derivations

Definition (Derivations)

Let (X, V,P,S) be a grammar. A word v € (V UX)* can be
derived from word u € (V UX)" (written as u = v) if

Q@ u=xyz, v=xy'z with x,z € (VUX)" and

Q thereisaruley — y' € P.
We write: u="* v if v can be derived from u in finitely many steps
(i.e., by using n derivations for n € Np).

German: Ableitung

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 15 / 24

C1. Formal Languages and Grammars Grammars

Language Generated by a Grammar

Definition (Languages)
The language generated by a grammar G = (X, V, P, S)

L(G)={weT"|S="w}

is the set of all words from £* that can be derived from S
with finitely many rule applications.

German: erzeugte Sprache

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 16 / 24

C1. Formal Languages and Grammars Grammars

Grammars

Examples: blackboard

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 17 / 24

C1. Formal Languages and Grammars Chomsky Hierarchy

C1.4 Chomsky Hierarchy

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 18 / 24

C1. Formal Languages and Grammars Chomsky Hierarchy

Chomsky Hierarchy

Grammars are organized into the Chomsky hierarchy.

Definition (Chomsky Hierarchy)
» Every grammar is of type 0 (all rules allowed).
» Grammar is of type 1 (context-sensitive)
if all rules wy — wy satisfy |wy| < |wa].
» Grammar is of type 2 (context-free)
if additionally wy € V (single variable) in all rules wy — ws.

» Grammar is of type 3 (regular)
if additionally wpo € XU XV in all rules wy — wy.

special case: rule S — ¢ is always allowed if S is the start variable
and never occurs on the right-hand side of any rule.

German: Chomsky-Hierarchie, Typ 0, Typ 1 (kontextsensitiv),

Typ 2 (kontextfrei), Typ 3 (regular)

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 19 / 24

C1. Formal Languages and Grammars Chomsky Hierarchy

Chomsky Hierarchy

Definition (Type 0-3 Languages)

A language L C ¥* is of type 0 (type 1, type 2, type 3)

if there exists a type-0 (type-1, type-2, type-3) grammar G
with £(G) = L.

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 20 / 24

C1. Formal Languages and Grammars Chomsky Hierarchy C1. Formal Languages and Grammars Chomsky Hierarchy
Type k Language: Example Chomsky Hierarchy
Example p -
Consider the language L generated by the grammar
({a,b,c,—, A, v, (O}, {F,A,N,C,D}, P,F) ()
with the following rules P: T h
F—A A—a N — —F
F—N A—b C— (FAF) [j
FoC A s c D (FVF) regular languages (type 3)
FD context free languages (type 2)
context sensitive languages (type 1)
Questions: L Type-0 languages)
> Is L a type-0 language? | All languages)
> Is L a type-1 language?
> Is L a type-2 language? Note: Not all languages can be described by grammars. (Proof?)
> Is L a type-3 language?
Gabriele Réger (University of Basel) Theory of Computer Science March 18, 2019 21 / 24 Gabriele Réger (University of Basel) Theory of Computer Science March 18, 2019 22/ 24
C1. Formal Languages and Grammars Summary C1. Formal Languages and Grammars Summary

Summary

v

Languages are sets of symbol sequences.

» Grammars are one possible way to specify languages.

v

Language generated by a grammar is the set of all words
(of terminal symbols) derivable from the start symbol.

C1.5 Summary

v

Chomsky hierarchy distinguishes between languages
at different levels of expressiveness.

following chapters:
» more about regular languages

> automata as alternative representation of languages

Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 23 / 24 Gabriele Roger (University of Basel) Theory of Computer Science March 18, 2019 24 /24

	Introduction
	Alphabets and Formal Languages
	Grammars
	Chomsky Hierarchy
	Summary

