
Theory of Computer Science
C1. Formal Languages and Grammars

Gabriele Röger

University of Basel

March 18, 2019

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 1 / 24

Theory of Computer Science
March 18, 2019 — C1. Formal Languages and Grammars

C1.1 Introduction

C1.2 Alphabets and Formal Languages

C1.3 Grammars

C1.4 Chomsky Hierarchy

C1.5 Summary

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 2 / 24

C1. Formal Languages and Grammars Introduction

C1.1 Introduction

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 3 / 24

C1. Formal Languages and Grammars Introduction

Course Contents

Parts of the course:

A. background X
. mathematical foundations and proof techniques

B. logic (Logik) X
. How can knowledge be represented?
. How can reasoning be automated?

C. automata theory and formal languages
(Automatentheorie und formale Sprachen)
. What is a computation?

D. Turing computability (Turing-Berechenbarkeit)
. What can be computed at all?

E. complexity theory (Komplexitätstheorie)
. What can be computed efficiently?

F. more computability theory (mehr Berechenbarkeitheorie)
. Other models of computability

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 4 / 24

C1. Formal Languages and Grammars Introduction

Example: Propositional Formulas

from the logic part:

Definition (Syntax of Propositional Logic)

Let A be a set of atomic propositions. The set of propositional
formulas (over A) is inductively defined as follows:

I Every atom a ∈ A is a propositional formula over A.

I If ϕ is a propositional formula over A,
then so is its negation ¬ϕ.

I If ϕ and ψ are propositional formulas over A,
then so is the conjunction (ϕ ∧ ψ).

I If ϕ and ψ are propositional formulas over A,
then so is the disjunction (ϕ ∨ ψ).

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 5 / 24

C1. Formal Languages and Grammars Introduction

Example: Propositional Formulas

Let SA be the set of all propositional formulas over A.

Such sets of symbol sequences (or words) are called languages.

Sought: General concepts to define such (often infinite) languages
with finite descriptions.

I today: grammars

I later: automata

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 6 / 24

C1. Formal Languages and Grammars Introduction

Example: Propositional Formulas

Example (Grammar for S{a,b,c})

Grammar variables {F,A,N,C,D} with start variable F,
terminal symbols {a, b, c,¬,∧,∨, (,)} and rules

F→ A A→ a N→ ¬F

F→ N A→ b C→ (F ∧ F)

F→ C A→ c D→ (F ∨ F)

F→ D

Start with F. In each step, replace a left-hand side of a rule
with its right-hand side until no more variables are left:

F⇒ N⇒ ¬F⇒ ¬D⇒ ¬(F ∨ F)⇒ ¬(A ∨ F)⇒ ¬(b ∨ F)

F

⇒ ¬(b ∨ A)⇒ ¬(b ∨ c)

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 7 / 24

C1. Formal Languages and Grammars Alphabets and Formal Languages

C1.2 Alphabets and Formal
Languages

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 8 / 24

C1. Formal Languages and Grammars Alphabets and Formal Languages

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ.
The empty word (the empty sequence of elements) is denoted by ε.
Σ∗ denotes the set of all words over Σ.
Σ+ (= Σ∗ \ {ε}) denotes the set of all non-empty words over Σ.

We write |w | for the length of a word w .

A formal language (over alphabet Σ) is a subset of Σ∗.

German: Alphabet, Zeichen/Symbole, leeres Wort, formale Sprache

Example

Σ = {a, b}
Σ∗ = {ε, a, b, aa, ab, ba, bb, . . . }
|aba| = 3, |b| = 1, |ε| = 0

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 9 / 24

C1. Formal Languages and Grammars Alphabets and Formal Languages

Languages: Examples

Example (Languages over Σ = {a, b})
I S1 = {a, aa, aaa, aaaa, . . . } = {a}+

I S2 = Σ∗

I S3 = {anbn | n ≥ 0} = {ε, ab, aabb, aaabbb, . . . }
I S4 = {ε}
I S5 = ∅
I S6 = {w ∈ Σ∗ | w contains twice as many as as bs}

S6

= {ε, aab, aba, baa, . . . }
I S7 = {w ∈ Σ∗ | |w | = 3}

S6

= {aaa, aab, aba, baa, bba, bab, abb, bbb}

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 10 / 24

C1. Formal Languages and Grammars Grammars

C1.3 Grammars

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 11 / 24

C1. Formal Languages and Grammars Grammars

Grammars

Definition (Grammars)

A grammar is a 4-tuple 〈Σ,V ,P, S〉 with:

1 Σ finite alphabet of terminal symbols

2 V finite set of variables (nonterminal symbols)
with V ∩ Σ = ∅

3 P ⊆ (V ∪ Σ)+ × (V ∪ Σ)∗ finite set of rules (or productions)

4 S ∈ V start variable

German: Grammatik, Terminalalphabet, Variablen, Regeln/Produktionen,

German: Startvariable

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 12 / 24

C1. Formal Languages and Grammars Grammars

Rule Sets

What exactly does P ⊆ (V ∪ Σ)+ × (V ∪ Σ)∗ mean?

I (V ∪ Σ)∗: all words over (V ∪ Σ)

I (V ∪ Σ)+: all non-empty words over (V ∪ Σ)
in general, for set X : X+ = X ∗ \ {ε}

I ×: Cartesian product

I (V ∪ Σ)+ × (V ∪ Σ)∗: set of all pairs 〈x , y〉, where x
non-empty word over (V ∪ Σ) and y word over (V ∪ Σ)

I Instead of 〈x , y〉 we usually write rules in the form x → y .

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 13 / 24

C1. Formal Languages and Grammars Grammars

Rules: Examples

Example

Let Σ = {a, b, c} and V = {X,Y,Z}.

Some examples of rules in (V ∪ Σ)+ × (V ∪ Σ)∗:

X→ XaY

Yb→ a

XY→ ε

XYZ→ abc

abc→ XYZ

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 14 / 24

C1. Formal Languages and Grammars Grammars

Derivations

Definition (Derivations)

Let 〈Σ,V ,P,S〉 be a grammar. A word v ∈ (V ∪ Σ)∗ can be
derived from word u ∈ (V ∪ Σ)+ (written as u ⇒ v) if

1 u = xyz , v = xy ′z with x , z ∈ (V ∪ Σ)∗ and

2 there is a rule y → y ′ ∈ P.

We write: u ⇒∗ v if v can be derived from u in finitely many steps
(i. e., by using n derivations for n ∈ N0).

German: Ableitung

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 15 / 24

C1. Formal Languages and Grammars Grammars

Language Generated by a Grammar

Definition (Languages)

The language generated by a grammar G = 〈Σ,V ,P,S〉

L(G) = {w ∈ Σ∗ | S ⇒∗ w}

is the set of all words from Σ∗ that can be derived from S
with finitely many rule applications.

German: erzeugte Sprache

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 16 / 24

C1. Formal Languages and Grammars Grammars

Grammars

Examples: blackboard

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 17 / 24

C1. Formal Languages and Grammars Chomsky Hierarchy

C1.4 Chomsky Hierarchy

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 18 / 24

C1. Formal Languages and Grammars Chomsky Hierarchy

Chomsky Hierarchy

Grammars are organized into the Chomsky hierarchy.

Definition (Chomsky Hierarchy)

I Every grammar is of type 0 (all rules allowed).

I Grammar is of type 1 (context-sensitive)
if all rules w1 → w2 satisfy |w1| ≤ |w2|.

I Grammar is of type 2 (context-free)
if additionally w1 ∈ V (single variable) in all rules w1 → w2.

I Grammar is of type 3 (regular)
if additionally w2 ∈ Σ ∪ ΣV in all rules w1 → w2.

special case: rule S → ε is always allowed if S is the start variable
and never occurs on the right-hand side of any rule.

German: Chomsky-Hierarchie, Typ 0, Typ 1 (kontextsensitiv),

Typ 2 (kontextfrei), Typ 3 (regulär)

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 19 / 24

C1. Formal Languages and Grammars Chomsky Hierarchy

Chomsky Hierarchy

Definition (Type 0–3 Languages)

A language L ⊆ Σ∗ is of type 0 (type 1, type 2, type 3)
if there exists a type-0 (type-1, type-2, type-3) grammar G
with L(G) = L.

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 20 / 24

C1. Formal Languages and Grammars Chomsky Hierarchy

Type k Language: Example

Example

Consider the language L generated by the grammar
〈{a, b, c,¬,∧,∨, (,)}, {F,A,N,C,D},P,F〉
with the following rules P:

F→ A A→ a N→ ¬F

F→ N A→ b C→ (F ∧ F)

F→ C A→ c D→ (F ∨ F)

F→ D

Questions:

I Is L a type-0 language?

I Is L a type-1 language?

I Is L a type-2 language?

I Is L a type-3 language?

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 21 / 24

C1. Formal Languages and Grammars Chomsky Hierarchy

Chomsky Hierarchy

regular languages (type 3)

context free languages (type 2)

context sensitive languages (type 1)

Type-0 languages

All languages

Note: Not all languages can be described by grammars. (Proof?)

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 22 / 24

C1. Formal Languages and Grammars Summary

C1.5 Summary

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 23 / 24

C1. Formal Languages and Grammars Summary

Summary

I Languages are sets of symbol sequences.

I Grammars are one possible way to specify languages.

I Language generated by a grammar is the set of all words
(of terminal symbols) derivable from the start symbol.

I Chomsky hierarchy distinguishes between languages
at different levels of expressiveness.

following chapters:

I more about regular languages

I automata as alternative representation of languages

Gabriele Röger (University of Basel) Theory of Computer Science March 18, 2019 24 / 24

	Introduction
	Alphabets and Formal Languages
	Grammars
	Chomsky Hierarchy
	Summary

