Theory of Computer Science B5. Predicate Logic II

Gabriele Röger

University of Basel

March 6, 2019

| Semantics<br>•00000000000 | Logical Consequences |  |
|---------------------------|----------------------|--|
|                           |                      |  |

# Semantics of Predicate Logic





#### Semantics: Motivation

- interpretations in propositional logic: truth assignments for the propositional variables
- There are no propositional variables in predicate logic.
- instead: interpretation determines meaning of the constant, function and predicate symbols.
- meaning of variable symbols not determined by interpretation but by separate variable assignment.

#### Interpretations and Variable Assignments

Let 
$$\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$$
 be a signature.

Definition (Interpretation, Variable Assignment)

An interpretation (for S) is a pair  $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$  of:

- a non-empty set *U* called the universe and
- a function ·<sup>1</sup> that assigns a meaning to the constant, function, and predicate symbols:

• 
$$c^{\mathcal{I}} \in U$$
 for constant symbols  $c \in \mathcal{C}$ 

- $f^{\mathcal{I}}: U^k \to U$  for k-ary function symbols  $f \in \mathcal{F}$
- $\mathsf{P}^{\mathcal{I}} \subseteq U^k$  for *k*-ary predicate symbols  $\mathsf{P} \in \mathcal{P}$

A variable assignment (for S and universe U) is a function  $\alpha : \mathcal{V} \to U$ .

German: Interpretation, Variablenzuweisung, Universum (or Grundmenge)

ogical Consequences

Summary 0000

### Interpretations and Variable Assignments: Example

#### Example

signature: 
$$S = \langle V, C, F, P \rangle$$
 with  $V = \{x, y, z\}$ ,  
 $C = \{\text{zero, one}\}, F = \{\text{sum, product}\}, P = \{\text{SquareNumber}\}$   
 $ar(\text{sum}) = ar(\text{product}) = 2, ar(\text{SquareNumber}) = 1$ 

## Interpretations and Variable Assignments: Example

#### Example

signature: 
$$S = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$$
 with  $\mathcal{V} = \{x, y, z\}$ ,  
 $\mathcal{C} = \{\text{zero, one}\}, \mathcal{F} = \{\text{sum, product}\}, \mathcal{P} = \{\text{SquareNumber}\}$   
 $ar(\text{sum}) = ar(\text{product}) = 2, ar(\text{SquareNumber}) = 1$   
 $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$  with  
 $\mathbf{U} = \{u_0, u_1, u_2, u_3, u_4, u_5, u_6\}$   
 $\mathbf{z} \text{ero}^{\mathcal{I}} = u_0$   
 $\mathbf{u} \text{one}^{\mathcal{I}} = u_1$   
 $\mathbf{u} \text{sum}^{\mathcal{I}}(u_i, u_j) = u_{(i+j) \mod 7} \text{ for all } i, j \in \{0, \dots, 6\}$   
 $\mathbf{u} \text{ product}^{\mathcal{I}}(u_i, u_j) = u_{(i:j) \mod 7} \text{ for all } i, j \in \{0, \dots, 6\}$   
 $\mathbf{u} \text{ SquareNumber}^{\mathcal{I}} = \{u_0, u_1, u_2, u_4\}$   
 $\alpha = \{x \mapsto u_5, y \mapsto u_5, z \mapsto u_0\}$ 

#### Semantics: Informally

Example:  $(\forall x (Block(x) \rightarrow Red(x)) \land Block(a))$ "For all objects x: if x is a block, then x is red. Also, the object called a is a block."

- Terms are interpreted as objects.
- Unary predicates denote properties of objects
   (to be a block, to be red, to be a square number, ...)
- General predicates denote relations between objects (to be someone's child, to have a common divisor, ...)
- Universally quantified formulas ("∀") are true if they hold for every object in the universe.
- Existentially quantified formulas ("∃") are true if they hold for at least one object in the universe.

## Interpretations of Terms

Let 
$$\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$$
 be a signature.

#### Definition (Interpretation of a Term)

Let  $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$  be an interpretation for S, and let  $\alpha$  be a variable assignment for S and universe U. Let t be a term over S. The interpretation of t under  $\mathcal{I}$  and  $\alpha$ , written as  $t^{\mathcal{I},\alpha}$ , is the element of the universe U defined as follows:

If 
$$t = x$$
 with  $x \in \mathcal{V}$  ( $t$  is a variable term):  
 $x^{\mathcal{I},\alpha} = \alpha(x)$ 

If 
$$t = c$$
 with  $c \in C$  ( $t$  is a constant term):  
 $c^{\mathcal{I},\alpha} = c^{\mathcal{I}}$ 

If 
$$t = f(t_1, \ldots, t_k)$$
 ( $t$  is a function term):  
 $f(t_1, \ldots, t_k)^{\mathcal{I}, \alpha} = f^{\mathcal{I}}(t_1^{\mathcal{I}, \alpha}, \ldots, t_k^{\mathcal{I}, \alpha})$ 

#### Interpretations of Terms: Example

#### Example

signature: 
$$S = \langle V, C, F, P \rangle$$
  
with  $V = \{x, y, z\}$ ,  $C = \{zero, one\}$ ,  $F = \{sum, product\}$ ,  
 $ar(sum) = ar(product) = 2$ 

#### Interpretations of Terms: Example

#### Example

signature: 
$$S = \langle V, C, F, P \rangle$$
  
with  $V = \{x, y, z\}$ ,  $C = \{\text{zero, one}\}$ ,  $F = \{\text{sum, product}\}$ ,  
 $ar(\text{sum}) = ar(\text{product}) = 2$ 

$$\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle \text{ with}$$

$$= U = \{u_0, u_1, u_2, u_3, u_4, u_5, u_6\}$$

$$= \text{zero}^{\mathcal{I}} = u_0$$

$$= \text{one}^{\mathcal{I}} = u_1$$

$$= \text{sum}^{\mathcal{I}}(u_i, u_j) = u_{(i+j) \mod 7} \text{ for all } i, j \in \{0, \dots, 6\}$$

$$= \text{product}^{\mathcal{I}}(u_i, u_j) = u_{(i\cdot j) \mod 7} \text{ for all } i, j \in \{0, \dots, 6\}$$

$$\alpha = \{x \mapsto u_5, y \mapsto u_5, z \mapsto u_0\}$$

Semantics Free/Bound Variables

\_ogical Consequences

Further Topics

Summary 0000

## Interpretations of Terms: Example (ctd.)

Example (ctd.)

• 
$$\operatorname{zero}^{\mathcal{I},\alpha} =$$

• 
$$y^{\mathcal{I},\alpha} =$$

• 
$$sum(x, y)^{\mathcal{I}, \alpha} =$$

• product(one, sum(x, zero)) $\mathcal{I}^{,\alpha} =$ 

. . .

### Semantics of Predicate Logic Formulas

Let  $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$  be a signature.

#### Definition (Formula is Satisfied or True)

Let  $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$  be an interpretation for S, and let  $\alpha$  be a variable assignment for S and universe U. We say that  $\mathcal{I}$  and  $\alpha$  satisfy a predicate logic formula  $\varphi$ (also:  $\varphi$  is true under  $\mathcal{I}$  and  $\alpha$ ), written:  $\mathcal{I}, \alpha \models \varphi$ , according to the following inductive rules:

$$\mathcal{I}, \alpha \models \mathsf{P}(t_1, \dots, t_k) \quad \text{iff } \langle t_1^{\mathcal{I}, \alpha}, \dots, t_k^{\mathcal{I}, \alpha} \rangle \in \mathsf{P}^{\mathcal{I}}$$
$$\mathcal{I}, \alpha \models (t_1 = t_2) \quad \text{iff } t_1^{\mathcal{I}, \alpha} = t_2^{\mathcal{I}, \alpha}$$
$$\mathcal{I}, \alpha \models \neg \varphi \quad \text{iff } \mathcal{I}, \alpha \not\models \varphi$$
$$\mathcal{I}, \alpha \models (\varphi \land \psi) \quad \text{iff } \mathcal{I}, \alpha \models \varphi \text{ and } \mathcal{I}, \alpha \models \psi$$
$$\mathcal{I}, \alpha \models (\varphi \lor \psi) \quad \text{iff } \mathcal{I}, \alpha \models \varphi \text{ or } \mathcal{I}, \alpha \models \psi$$

German:  $\mathcal{I}$  und  $\alpha$  erfüllen  $\varphi$  (also:  $\varphi$  ist wahr unter  $\mathcal{I}$  und  $\alpha$ )

. . .

Free/Bound Variables

ogical Consequences

Further Topics

Summary 0000

## Semantics of Predicate Logic Formulas

Let  $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$  be a signature.

Definition (Formula is Satisfied or True)

$$\mathcal{I}, \alpha \models \forall x \varphi \quad \text{iff } \mathcal{I}, \alpha[x := u] \models \varphi \text{ for all } u \in U$$

$$\mathcal{I}, \alpha \models \exists x \varphi \quad \text{iff } \mathcal{I}, \alpha[x := u] \models \varphi \text{ for at least one } u \in U$$

where  $\alpha[x := u]$  is the same variable assignment as  $\alpha$ , except that it maps variable x to the value u. Formally:

$$(\alpha[x := u])(z) = \begin{cases} u & \text{if } z = x \\ \alpha(z) & \text{if } z \neq x \end{cases}$$

| Semantics                               |     | Logical Consequences |  |
|-----------------------------------------|-----|----------------------|--|
| 000000000000000000000000000000000000000 |     |                      |  |
| -                                       |     |                      |  |
| Companylar                              | . Γ |                      |  |

#### Semantics: Example

#### Example

signature: 
$$S = \langle V, C, F, P \rangle$$
  
with  $V = \{x, y, z\}$ ,  $C = \{a, b\}$ ,  $F = \emptyset$ ,  $P = \{Block, Red\}$ ,  
 $ar(Block) = ar(Red) = 1$ .

| Logical Consequences | Further Topics | Summary        |
|----------------------|----------------|----------------|
|                      |                | 0000           |
| -                    | 000000         | 000000 0000000 |

#### Example

signature: 
$$S = \langle V, C, F, P \rangle$$
  
with  $V = \{x, y, z\}$ ,  $C = \{a, b\}$ ,  $F = \emptyset$ ,  $P = \{Block, Red\}$ ,  
 $ar(Block) = ar(Red) = 1$ .

$$\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle \text{ with}$$

$$= U = \{u_1, u_2, u_3, u_4, u_5\}$$

$$= a^{\mathcal{I}} = u_1$$

$$= b^{\mathcal{I}} = u_3$$

$$= \text{Block}^{\mathcal{I}} = \{u_1, u_2\}$$

$$= \text{Red}^{\mathcal{I}} = \{u_1, u_2, u_3, u_5\}$$

$$\alpha = \{x \mapsto u_1, y \mapsto u_2, z \mapsto u_1\}$$

Free/Bound Variables

ogical Consequences

Further Topics

Summary 0000

## Semantics: Example (ctd.)

#### Example (ctd.)

- $\mathcal{I}, \alpha \models (\mathsf{Block}(\mathsf{b}) \lor \neg \mathsf{Block}(\mathsf{b}))$ ?
- $\mathcal{I}, \alpha \models (\mathsf{Block}(x) \rightarrow (\mathsf{Block}(x) \lor \neg \mathsf{Block}(y)))?$
- $\mathcal{I}, \alpha \models (\mathsf{Block}(\mathsf{a}) \land \mathsf{Block}(\mathsf{b}))$ ?
- $\mathcal{I}, \alpha \models \forall x (\mathsf{Block}(x) \to \mathsf{Red}(x))?$

Free/Bound Variable

ogical Consequences

Further Topics

Summary 0000

## Semantics: Example (ctd.)

#### Example (ctd.)

• 
$$\mathcal{I}, \alpha \models (\mathsf{Block}(\mathsf{b}) \lor \neg \mathsf{Block}(\mathsf{b}))?$$

Free/Bound Variable

ogical Consequences

Further Topic

Summary 0000

## Semantics: Example (ctd.)

#### Example (ctd.)

Free/Bound Variable

ogical Consequences

Further Topics

Summary 0000

## Semantics: Example (ctd.)

#### Example (ctd.)

• 
$$\mathcal{I}, \alpha \models (\mathsf{Block}(\mathsf{a}) \land \mathsf{Block}(\mathsf{b}))$$
?

Free/Bound Variable

ogical Consequences

Further Topic

Summary 0000

## Semantics: Example (ctd.)

#### Example (ctd.)

Free/Bound Variable 00000000 ogical Consequences

Further Topics

Summary 0000

#### Questions



#### Questions?

| Free/Bound Variables<br>●0000000 | Logical Consequences<br>000000 |  |
|----------------------------------|--------------------------------|--|
|                                  |                                |  |

# Free and Bound Variables





- Consider a signature with variable symbols {x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>,...} and an interpretation *I*.
- Which parts of the definition of  $\alpha$  are relevant to decide whether  $\mathcal{I}, \alpha \models (\forall x_4(\mathsf{R}(x_4, x_2) \lor (\mathsf{f}(x_3) = x_4)) \lor \exists x_3\mathsf{S}(x_3, x_2))$ ?

- Consider a signature with variable symbols {*x*<sub>1</sub>, *x*<sub>2</sub>, *x*<sub>3</sub>,...} and an interpretation *I*.
- Which parts of the definition of  $\alpha$  are relevant to decide whether  $\mathcal{I}, \alpha \models (\forall x_4(\mathsf{R}(x_4, x_2) \lor (\mathsf{f}(x_3) = x_4)) \lor \exists x_3\mathsf{S}(x_3, x_2))$ ?
- α(x<sub>1</sub>), α(x<sub>5</sub>), α(x<sub>6</sub>), α(x<sub>7</sub>), ... are irrelevant since those variable symbols occur in no formula.

 ${\sf Question}:$ 

- Consider a signature with variable symbols {*x*<sub>1</sub>, *x*<sub>2</sub>, *x*<sub>3</sub>,...} and an interpretation *I*.
- Which parts of the definition of  $\alpha$  are relevant to decide whether  $\mathcal{I}, \alpha \models (\forall x_4(\mathsf{R}(x_4, x_2) \lor (\mathsf{f}(x_3) = x_4)) \lor \exists x_3\mathsf{S}(x_3, x_2))$ ?
- α(x<sub>1</sub>), α(x<sub>5</sub>), α(x<sub>6</sub>), α(x<sub>7</sub>), ... are irrelevant since those variable symbols occur in no formula.
- α(x<sub>4</sub>) also is irrelevant: the variable occurs in the formula, but all occurrences are bound by a surrounding quantifier.

Question:

- Consider a signature with variable symbols {*x*<sub>1</sub>, *x*<sub>2</sub>, *x*<sub>3</sub>,...} and an interpretation *I*.
- Which parts of the definition of  $\alpha$  are relevant to decide whether  $\mathcal{I}, \alpha \models (\forall x_4(\mathsf{R}(x_4, x_2) \lor (\mathsf{f}(x_3) = x_4)) \lor \exists x_3\mathsf{S}(x_3, x_2))$ ?
- α(x<sub>1</sub>), α(x<sub>5</sub>), α(x<sub>6</sub>), α(x<sub>7</sub>), ... are irrelevant since those variable symbols occur in no formula.
- α(x<sub>4</sub>) also is irrelevant: the variable occurs in the formula, but all occurrences are bound by a surrounding quantifier.
- $\rightarrow$  only assignments for free variables  $x_2$  and  $x_3$  relevant

German: gebundene und freie Variablen

|             | Free/Bound Variables<br>000●0000 | Logical Consequences |  |
|-------------|----------------------------------|----------------------|--|
| Variables o | of a Term                        |                      |  |

#### Definition (Variables of a Term)

Let t be a term. The set of variables that occur in t, written as var(t), is defined as follows:

- var(x) = {x}
   for variable symbols x
- $var(c) = \emptyset$

for constant symbols  $\ensuremath{\mathsf{c}}$ 

•  $var(f(t_1, \ldots, t_l)) = var(t_1) \cup \cdots \cup var(t_l)$ for function terms

terminology: A term t with  $var(t) = \emptyset$  is called ground term. German: Grundterm

example: var(product(x, sum(k, y))) =

#### Free and Bound Variables of a Formula

#### Definition (Free Variables)

Let  $\varphi$  be a predicate logic formula. The set of free variables of  $\varphi$ , written as *free*( $\varphi$ ), is defined as follows:

• 
$$free(\mathsf{P}(t_1,\ldots,t_k)) = var(t_1) \cup \cdots \cup var(t_k)$$

• 
$$free((t_1 = t_2)) = var(t_1) \cup var(t_2)$$

• 
$$free(\neg \varphi) = free(\varphi)$$

• 
$$free((\varphi \land \psi)) = free((\varphi \lor \psi)) = free(\varphi) \cup free(\psi)$$

• 
$$free(\forall x \varphi) = free(\exists x \varphi) = free(\varphi) \setminus \{x\}$$

Example: free(( $\forall x_4(\mathsf{R}(x_4, x_2) \lor (\mathsf{f}(x_3) = x_4)) \lor \exists x_3\mathsf{S}(x_3, x_2)))$ 

## Closed Formulas/Sentences

Note: Let  $\varphi$  be a formula and let  $\alpha$  and  $\beta$  variable assignments with  $\alpha(x) = \beta(x)$  for all free variables x of  $\varphi$ . Then  $\mathcal{I}, \alpha \models \varphi$  iff  $\mathcal{I}, \beta \models \varphi$ .

## Closed Formulas/Sentences

Note: Let  $\varphi$  be a formula and let  $\alpha$  and  $\beta$  variable assignments with  $\alpha(x) = \beta(x)$  for all free variables x of  $\varphi$ . Then  $\mathcal{I}, \alpha \models \varphi$  iff  $\mathcal{I}, \beta \models \varphi$ .

In particular,  $\alpha$  is completely irrelevant if  $free(\varphi) = \emptyset$ .

## Closed Formulas/Sentences

Note: Let  $\varphi$  be a formula and let  $\alpha$  and  $\beta$  variable assignments with  $\alpha(x) = \beta(x)$  for all free variables x of  $\varphi$ .

Then  $\mathcal{I}, \alpha \models \varphi$  iff  $\mathcal{I}, \beta \models \varphi$ .

In particular,  $\alpha$  is completely irrelevant if  $free(\varphi) = \emptyset$ .

#### Definition (Closed Formulas/Sentences)

A formula  $\varphi$  without free variables (i. e.,  $free(\varphi) = \emptyset$ ) is called closed formula or sentence.

If  $\varphi$  is a sentence, then we often write  $\mathcal{I} \models \varphi$ instead of  $\mathcal{I}, \alpha \models \varphi$ , since the definition of  $\alpha$  does not influence whether  $\varphi$  is true under  $\mathcal{I}$  and  $\alpha$  or not.

Formulas with at least one free variable are called open.

German: geschlossene Formel/Satz, offene Formel

#### Closed Formulas/Sentences: Examples

Question: Which of the following formulas are sentences?

- $(Block(b) \lor \neg Block(b))$
- $(\operatorname{Block}(x) \to (\operatorname{Block}(x) \lor \neg \operatorname{Block}(y)))$
- $(Block(a) \land Block(b))$
- $\forall x (\mathsf{Block}(x) \to \mathsf{Red}(x))$

Free/Bound Variables

ogical Consequences

Further Topics

Summary 0000

#### Questions



#### Questions?

|  | Logical Consequences<br>•00000 |  |
|--|--------------------------------|--|
|  |                                |  |

# Logical Consequences





## Terminology for Formulas

The terminology we introduced for propositional logic similarly applies to predicate logic:

- Interpretation  $\mathcal{I}$  and variable assignment  $\alpha$  form a model of the formula  $\varphi$  if  $\mathcal{I}, \alpha \models \varphi$ .
- Formula  $\varphi$  is satisfiable if  $\mathcal{I}, \alpha \models \varphi$  for at least one  $\mathcal{I}, \alpha$ .
- Formula  $\varphi$  is falsifiable if  $\mathcal{I}, \alpha \not\models \varphi$ . for at least one  $\mathcal{I}, \alpha$
- Formula  $\varphi$  is valid if  $\mathcal{I}, \alpha \models \varphi$  for all  $\mathcal{I}, \alpha$ .
- Formula  $\varphi$  is unsatisfiable if  $\mathcal{I}, \alpha \not\models \varphi$  for all  $\mathcal{I}, \alpha$ .
- Formulas  $\varphi$  and  $\psi$  are logically equivalent, written as  $\varphi \equiv \psi$ , if they have the same models.

German: Modell, erfüllbar, falsifizierbar, gültig, unerfüllbar, logisch äquivalent

Logical Consequences

Further Topics

Summary 0000

### Sets of Formulas: Semantics

#### Definition (Satisfied/True Sets of Formulas)

Let S be a signature,  $\Phi$  a set of formulas over S,  $\mathcal{I}$  an interpretation for S and  $\alpha$  a variable assignment for Sand the universe of  $\mathcal{I}$ .

We say that  $\mathcal{I}$  and  $\alpha$  satisfy the formulas  $\Phi$ (also:  $\Phi$  is true under  $\mathcal{I}$  and  $\alpha$ ), written as:  $\mathcal{I}, \alpha \models \Phi$ , if  $\mathcal{I}, \alpha \models \varphi$  for all  $\varphi \in \Phi$ .

German:  $\mathcal I$  und  $\alpha$  erfüllen  $\Phi$ ,  $\Phi$  ist wahr unter  $\mathcal I$  und  $\alpha$ 

#### Terminology for Sets of Formulas and Sentences

- Again, we use the same notations and concepts as in propositional logic.
  - Example:
    - A set of formulas Φ is satisfiable if *I*, α ⊨ Φ for at least one *I*, α.
    - A set of formulas Φ (logically) implies formula ψ, written as Φ ⊨ ψ, if all models of Φ are models of ψ.

### Terminology for Sets of Formulas and Sentences

- Again, we use the same notations and concepts as in propositional logic.
  - Example:
    - A set of formulas Φ is satisfiable if *I*, α ⊨ Φ for at least one *I*, α.
    - A set of formulas Φ (logically) implies formula ψ, written as Φ ⊨ ψ, if all models of Φ are models of ψ.
- All concepts can be used for the special case of sentences (or sets of sentences). In this case we usually omit α.
   Examples:
  - Interpretation  $\mathcal{I}$  is a model of a sentence  $\varphi$  if  $\mathcal{I} \models \varphi$ .
  - Sentence  $\varphi$  is unsatisfiable if  $\mathcal{I} \not\models \varphi$  for all  $\mathcal{I}$ .

### Terminology for Sets of Formulas and Sentences

 Again, we use the same notations and concepts as in propositional logic.

Example:

- A set of formulas Φ is satisfiable if *I*, α ⊨ Φ for at least one *I*, α.
- A set of formulas Φ (logically) implies formula ψ, written as Φ ⊨ ψ, if all models of Φ are models of ψ.
- All concepts can be used for the special case of sentences (or sets of sentences). In this case we usually omit α.
   Examples:
  - Interpretation  $\mathcal{I}$  is a model of a sentence  $\varphi$  if  $\mathcal{I} \models \varphi$ .
  - Sentence  $\varphi$  is unsatisfiable if  $\mathcal{I} \not\models \varphi$  for all  $\mathcal{I}$ .

similarly:

• 
$$\varphi \models \psi$$
 if  $\{\varphi\} \models \psi$   
•  $\Phi \models \Psi$  if  $\Phi \models \psi$  for all  $\psi \in \Psi$ 

Free/Bound Variable

Logical Consequences

Further Topics

Summary 0000

#### Questions



### Questions?

|  | Logical Consequences | Further Topics<br>•000000 |  |
|--|----------------------|---------------------------|--|
|  |                      |                           |  |

# Further Topics





#### **Further Topics**

Based on these definitions we could cover the same topics as in propositional logic:

- important logical equivalences
- normal forms
- theorems about reasoning (deduction theorem etc.)

We briefly discuss some general results on those topics but will not go into detail.

|            | Logical Consequences | Further Topics<br>000●000 |  |
|------------|----------------------|---------------------------|--|
| Lowised En |                      |                           |  |

#### Logical Equivalences

- All logical equivalences of propositional logic also hold in predicate logic (e. g., (φ ∨ ψ) ≡ (ψ ∨ φ)). (Why?)
- Additionally the following equivalences and implications hold:

$$\begin{array}{ll} (\forall x \varphi \land \forall x \psi) \equiv \forall x (\varphi \land \psi) \\ (\forall x \varphi \lor \forall x \psi) \models \forall x (\varphi \lor \psi) & \text{but not vice versa} \\ (\forall x \varphi \land \psi) \equiv \forall x (\varphi \land \psi) & \text{if } x \notin free(\psi) \\ (\forall x \varphi \lor \psi) \equiv \forall x (\varphi \lor \psi) & \text{if } x \notin free(\psi) \\ \neg \forall x \varphi \equiv \exists x \neg \varphi \\ \exists x (\varphi \lor \psi) \equiv (\exists x \varphi \lor \exists x \psi) \\ \exists x (\varphi \land \psi) \models (\exists x \varphi \land \exists x \psi) & \text{but not vice versa} \\ (\exists x \varphi \lor \psi) \equiv \exists x (\varphi \lor \psi) & \text{if } x \notin free(\psi) \\ (\exists x \varphi \land \psi) \equiv \exists x (\varphi \land \psi) & \text{if } x \notin free(\psi) \\ \neg \exists x \varphi \equiv \forall x \neg \varphi \end{array}$$

|             |    | Logical Consequences | Further Topics<br>0000000 |  |
|-------------|----|----------------------|---------------------------|--|
| Normal Forr | ns |                      |                           |  |

Analogously to DNF and CNF for propositional logic there are several normal forms for predicate logic, such as

negation normal form (NNF):

negation symbols  $(\neg)$  are only allowed in front of atoms

prenex normal form:

quantifiers must form the outermost part of the formula

Skolem normal form:

prenex normal form without existential quantifiers

German: Negationsnormalform, Pränexnormalform, Skolemnormalform

## Normal Forms (ctd.)

Efficient methods transform formula  $\varphi$ 

- into an equivalent formula in negation normal form,
- into an equivalent formula in prenex normal form, or
- into an equisatisfiable formula in Skolem normal form.

German: erfüllbarkeitsäquivalent

Free/Bound Variable: 00000000 ogical Consequences

Further Topics

Summary 0000

#### Questions



#### Questions?

|  | Logical Consequences<br>000000 | Summary<br>•000 |
|--|--------------------------------|-----------------|
|  |                                |                 |

# Summary

|         | Logical Consequences | Summary<br>0●00 |
|---------|----------------------|-----------------|
| Summary |                      |                 |

bound vs. free variables:

- **bound** vs. free variables: to decide if  $\mathcal{I}, \alpha \models \varphi$ , only free variables in  $\alpha$  matter
- sentences (closed formulas): formulas without free variables

Once the basic definitions are in place, predicate logic can be developed in the same way as propositional logic:

- logical consequences
- logical equivalences
- normal forms
- deduction theorem etc.

|  | Logical Consequences | Summary<br>00●0 |
|--|----------------------|-----------------|
|  |                      |                 |

#### Other Logics

. . . .

- We considered first-order predicate logic.
- Second-order predicate logic allows quantifying over predicate symbols.
- There are intermediate steps, e. g. monadic second-order logic (all quantified predicates are unary).
- Modal logics have new operators  $\Box$  and  $\Diamond$ .
  - $\blacksquare$  classical meaning:  $\Box \varphi$  for " $\varphi$  is necessary",
    - $\Diamond \varphi$  for " $\varphi$  is possible".
  - temporal logic:  $\Box \varphi$  for " $\varphi$  is always true in the future",
    - $\Diamond \varphi$  for "  $\varphi$  is true at some point in the future"
  - deontic logic:  $\Box \varphi$  for " $\varphi$  is obligatory",

 $\Diamond \varphi$  for " $\varphi$  is permitted"

In fuzzy logic, formulas are not true or false but have values between 0 and 1.

## What's Next?

#### contents of this course:

A. background  $\checkmark$ 

b mathematical foundations and proof techniques

- B. logic
  - How can knowledge be represented? How can reasoning be automated?
- C. automata theory and formal languages▷ What is a computation?
- D. Turing computability

▷ What can be computed at all?

E. complexity theory

What can be computed efficiently?

F. more computability theory

 $\triangleright$  Other models of computability

## What's Next?

#### contents of this course:

A. background  $\checkmark$ 

b mathematical foundations and proof techniques

- B. logic √
  - How can knowledge be represented? How can reasoning be automated?
- C. automata theory and formal languages▷ What is a computation?
- D. Turing computability

▷ What can be computed at all?

E. complexity theory

What can be computed efficiently?

F. more computability theory

 $\triangleright$  Other models of computability