Theory of Computer Science
 B5. Predicate Logic II

Gabriele Röger
University of Basel

March 6, 2019

Semantics of Predicate Logic

Logic: Overview

Semantics: Motivation

■ interpretations in propositional logic: truth assignments for the propositional variables
■ There are no propositional variables in predicate logic.

- instead: interpretation determines meaning of the constant, function and predicate symbols.
- meaning of variable symbols not determined by interpretation but by separate variable assignment.

Interpretations and Variable Assignments

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ be a signature.

Definition (Interpretation, Variable Assignment)

An interpretation (for \mathcal{S}) is a pair $\mathcal{I}=\left\langle U,{ }^{\mathcal{I}}\right\rangle$ of:
■ a non-empty set U called the universe and

- a function ${ }^{\mathcal{I}}$ that assigns a meaning to the constant, function, and predicate symbols:
- $c^{\mathcal{I}} \in U$ for constant symbols $c \in \mathcal{C}$
- $\mathrm{f}^{\mathcal{I}}: U^{k} \rightarrow U$ for k-ary function symbols $\mathrm{f} \in \mathcal{F}$
- $\mathrm{P}^{\mathcal{I}} \subseteq U^{k}$ for k-ary predicate symbols $\mathrm{P} \in \mathcal{P}$

A variable assignment (for \mathcal{S} and universe U)
is a function $\alpha: \mathcal{V} \rightarrow U$.
German: Interpretation, Variablenzuweisung, Universum (or Grundmenge)

Interpretations and Variable Assignments: Example

Example

signature: $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ with $\mathcal{V}=\{x, y, z\}$,
$\mathcal{C}=\{$ zero, one $\}, \mathcal{F}=\{$ sum, product $\}, \mathcal{P}=\{$ SquareNumber $\}$
$\operatorname{ar}($ sum $)=\operatorname{ar}($ product $)=2, \operatorname{ar}($ SquareNumber $)=1$

Interpretations and Variable Assignments: Example

Example

signature: $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ with $\mathcal{V}=\{x, y, z\}$,
$\mathcal{C}=\{$ zero, one $\}, \mathcal{F}=\{$ sum, product $\}, \mathcal{P}=\{$ SquareNumber $\}$ $\operatorname{ar}($ sum $)=\operatorname{ar}($ product $)=2, \operatorname{ar}($ SquareNumber $)=1$

$$
\begin{aligned}
\mathcal{I} & =\left\langle U, \cdot^{\mathcal{I}}\right\rangle \text { with } \\
& \square U=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\} \\
& \text { zero }^{\mathcal{I}}=u_{0} \\
& \text { one }^{\mathcal{I}}=u_{1} \\
& ■ \operatorname{sum}^{\mathcal{I}}\left(u_{i}, u_{j}\right)=u_{(i+j) \bmod 7} \text { for all } i, j \in\{0, \ldots, 6\} \\
& \operatorname{product}^{\mathcal{I}}\left(u_{i}, u_{j}\right)=u_{(i \cdot j) \bmod 7} \text { for all } i, j \in\{0, \ldots, 6\} \\
& \square \text { SquareNumber }^{\mathcal{I}}=\left\{u_{0}, u_{1}, u_{2}, u_{4}\right\} \\
\alpha & =\left\{x \mapsto u_{5}, y \mapsto u_{5}, z \mapsto u_{0}\right\}
\end{aligned}
$$

Semantics: Informally

Example: $(\forall x(\operatorname{Block}(x) \rightarrow \operatorname{Red}(x)) \wedge \operatorname{Block}(a))$
"For all objects x : if x is a block, then x is red.
Also, the object called a is a block."

- Terms are interpreted as objects.
- Unary predicates denote properties of objects (to be a block, to be red, to be a square number, ...)
■ General predicates denote relations between objects (to be someone's child, to have a common divisor, ...)
■ Universally quantified formulas (" \forall ") are true if they hold for every object in the universe.
■ Existentially quantified formulas (" \exists ") are true if they hold for at least one object in the universe.

Interpretations of Terms

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ be a signature.

Definition (Interpretation of a Term)

Let $\mathcal{I}=\left\langle U,{ }^{\mathcal{I}}\right\rangle$ be an interpretation for \mathcal{S}, and let α be a variable assignment for \mathcal{S} and universe U.
Let t be a term over \mathcal{S}.
The interpretation of t under \mathcal{I} and α, written as $t^{\mathcal{I}, \alpha}$, is the element of the universe U defined as follows:

- If $t=x$ with $x \in \mathcal{V}(t$ is a variable term $)$:

$$
x^{\mathcal{I}, \alpha}=\alpha(x)
$$

- If $t=\mathrm{c}$ with $\mathrm{c} \in \mathcal{C}$ (t is a constant term): $c^{\mathcal{I}, \alpha}=c^{\mathcal{I}}$
- If $t=\mathrm{f}\left(t_{1}, \ldots, t_{k}\right)(t$ is a function term $)$:

$$
\mathfrak{f}\left(t_{1}, \ldots, t_{k}\right)^{\mathcal{I}, \alpha}=\mathrm{f}^{\mathcal{I}}\left(t_{1}^{\mathcal{I}, \alpha}, \ldots, t_{k}^{\mathcal{I}, \alpha}\right)
$$

Interpretations of Terms: Example

> Example
> signature: $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$
> with $\mathcal{V}=\{x, y, z\}, \mathcal{C}=\{$ zero, one $\}, \mathcal{F}=\{$ sum, product $\}$,
> $\operatorname{ar}($ sum $)=\operatorname{ar}($ product $)=2$

Interpretations of Terms: Example

Example

signature: $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$
with $\mathcal{V}=\{x, y, z\}, \mathcal{C}=\{$ zero, one $\}, \mathcal{F}=\{$ sum, product $\}$, $\operatorname{ar}($ sum $)=\operatorname{ar}($ product $)=2$
$\mathcal{I}=\left\langle U,{ }^{\mathcal{I}}\right\rangle$ with
$\square U=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$

- zero $^{\mathcal{I}}=u_{0}$
- one $^{\mathcal{I}}=u_{1}$
$\square \operatorname{sum}^{\mathcal{I}}\left(u_{i}, u_{j}\right)=u_{(i+j) \bmod 7}$ for all $i, j \in\{0, \ldots, 6\}$
- product ${ }^{\mathcal{I}}\left(u_{i}, u_{j}\right)=u_{(i \cdot j) \bmod 7}$ for all $i, j \in\{0, \ldots, 6\}$
$\alpha=\left\{x \mapsto u_{5}, y \mapsto u_{5}, z \mapsto u_{0}\right\}$

Interpretations of Terms: Example (ctd.)

Example (ctd.)
■ $z^{\text {zero }}{ }^{\mathcal{I}, \alpha}=$

- $y^{\mathcal{I}, \alpha}=$
- $\operatorname{sum}(x, y)^{\mathcal{I}, \alpha}=$
- $\operatorname{product}(\text { one }, \operatorname{sum}(x, \text { zero }))^{\mathcal{I}, \alpha}=$

Semantics of Predicate Logic Formulas

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ be a signature.

Definition (Formula is Satisfied or True)

Let $\mathcal{I}=\left\langle U,{ }^{\mathcal{I}}\right\rangle$ be an interpretation for \mathcal{S}, and let α be a variable assignment for \mathcal{S} and universe U. We say that \mathcal{I} and α satisfy a predicate logic formula φ (also: φ is true under \mathcal{I} and α), written: $\mathcal{I}, \alpha \models \varphi$, according to the following inductive rules:

$$
\begin{align*}
\mathcal{I}, \alpha \models \mathrm{P}\left(t_{1}, \ldots, t_{k}\right) & \text { iff }\left\langle t_{1}^{\mathcal{I}, \alpha}, \ldots, t_{k}^{\mathcal{I}, \alpha}\right\rangle \in \mathrm{P}^{\mathcal{I}} \\
\mathcal{I}, \alpha=\left(t_{1}=t_{2}\right) & \text { iff } t_{1}^{\mathcal{I}, \alpha}=t_{2}^{\mathcal{I}, \alpha} \\
\mathcal{I}, \alpha \models \neg \varphi & \text { iff } \mathcal{I}, \alpha \neq \varphi \\
\mathcal{I}, \alpha \models(\varphi \wedge \psi) & \text { iff } \mathcal{I}, \alpha=\varphi \text { and } \mathcal{I}, \alpha \models \psi \\
\mathcal{I}, \alpha \models(\varphi \vee \psi) & \text { iff } \mathcal{I}, \alpha=\varphi \text { or } \mathcal{I}, \alpha \models \psi
\end{align*}
$$

German: \mathcal{I} und α erfüllen φ (also: φ ist wahr unter \mathcal{I} und α)

Semantics of Predicate Logic Formulas

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ be a signature.

Definition (Formula is Satisfied or True)

$$
\begin{array}{ll}
\mathcal{I}, \alpha \models \forall x \varphi & \text { iff } \mathcal{I}, \alpha[x:=u] \models \varphi \text { for all } u \in U \\
\mathcal{I}, \alpha \models \exists x \varphi & \text { iff } \mathcal{I}, \alpha[x:=u] \models \varphi \text { for at least one } u \in U
\end{array}
$$

where $\alpha[x:=u]$ is the same variable assignment as α, except that it maps variable x to the value u.
Formally:
$(\alpha[x:=u])(z)= \begin{cases}u & \text { if } z=x \\ \alpha(z) & \text { if } z \neq x\end{cases}$

Semantics: Example

Example

signature: $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$
with $\mathcal{V}=\{x, y, z\}, \mathcal{C}=\{\mathrm{a}, \mathrm{b}\}, \mathcal{F}=\emptyset, \mathcal{P}=\{$ Block, Red $\}$, $\operatorname{ar}($ Block $)=\operatorname{ar}($ Red $)=1$.

Semantics: Example

Example

signature: $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$
with $\mathcal{V}=\{x, y, z\}, \mathcal{C}=\{\mathrm{a}, \mathrm{b}\}, \mathcal{F}=\emptyset, \mathcal{P}=\{$ Block, Red $\}$, $\operatorname{ar}($ Block $)=\operatorname{ar}($ Red $)=1$.

$$
\begin{aligned}
\mathcal{I} & =\left\langle U, \cdot{ }^{\mathcal{I}}\right\rangle \text { with } \\
& \cup U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\} \\
& \square \mathrm{a}^{\mathcal{I}}=u_{1} \\
& \mathrm{~b}^{\mathcal{I}}=u_{3}
\end{aligned}
$$

- Block $^{\mathcal{I}}=\left\{u_{1}, u_{2}\right\}$
$■ \operatorname{Red}^{\mathcal{I}}=\left\{u_{1}, u_{2}, u_{3}, u_{5}\right\}$

$$
\alpha=\left\{x \mapsto u_{1}, y \mapsto u_{2}, z \mapsto u_{1}\right\}
$$

Semantics: Example (ctd.)

Example (ctd.)

Questions:
■ $\mathcal{I}, \alpha \models(\operatorname{Block}(b) \vee \neg \operatorname{Block}(b))$?
■ $\mathcal{I}, \alpha \models(\operatorname{Block}(x) \rightarrow(\operatorname{Block}(x) \vee \neg \operatorname{Block}(y)))$?

- $\mathcal{I}, \alpha=(\operatorname{Block}(\mathrm{a}) \wedge \operatorname{Block}(\mathrm{b}))$?

■ $\mathcal{I}, \alpha \models \forall x(\operatorname{Block}(x) \rightarrow \operatorname{Red}(x))$?

Semantics: Example (ctd.)

Example (ctd.)

Questions:

- $\mathcal{I}, \alpha \models(\operatorname{Block}(\mathrm{b}) \vee \neg \operatorname{Block}(\mathrm{b}))$?

Semantics: Example (ctd.)

Example (ctd.)

Questions:

■ I,$\alpha \models(\operatorname{Block}(x) \rightarrow(\operatorname{Block}(x) \vee \neg \operatorname{Block}(y)))$?

Semantics: Example (ctd.)

Example (ctd.)

Questions:

■ $\mathcal{I}, \alpha \models(\operatorname{Block}(\mathrm{a}) \wedge \operatorname{Block}(\mathrm{b}))$?

Semantics: Example (ctd.)

Example (ctd.)

Questions:

- $\mathcal{I}, \alpha \models \forall x(\operatorname{Block}(x) \rightarrow \operatorname{Red}(x))$?

Questions

Questions?

Free and Bound Variables

Logic: Overview

Free and Bound Variables: Motivation

Question:

■ Consider a signature with variable symbols $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ and an interpretation \mathcal{I}.

- Which parts of the definition of α are relevant to decide whether \mathcal{I}, $\alpha \vDash\left(\forall x_{4}\left(R\left(x_{4}, x_{2}\right) \vee\left(f\left(x_{3}\right)=x_{4}\right)\right) \vee \exists x_{3} S\left(x_{3}, x_{2}\right)\right)$?

Free and Bound Variables: Motivation

Question:

■ Consider a signature with variable symbols $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ and an interpretation \mathcal{I}.

■ Which parts of the definition of α are relevant to decide whether \mathcal{I}, $\alpha \vDash\left(\forall x_{4}\left(\mathrm{R}\left(x_{4}, x_{2}\right) \vee\left(f\left(x_{3}\right)=x_{4}\right)\right) \vee \exists x_{3} S\left(x_{3}, x_{2}\right)\right)$?

- $\alpha\left(x_{1}\right), \alpha\left(x_{5}\right), \alpha\left(x_{6}\right), \alpha\left(x_{7}\right), \ldots$ are irrelevant since those variable symbols occur in no formula.

Free and Bound Variables: Motivation

Question:

■ Consider a signature with variable symbols $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ and an interpretation \mathcal{I}.

- Which parts of the definition of α are relevant to decide whether \mathcal{I}, $\alpha \vDash\left(\forall x_{4}\left(\mathrm{R}\left(x_{4}, x_{2}\right) \vee\left(f\left(x_{3}\right)=x_{4}\right)\right) \vee \exists x_{3} S\left(x_{3}, x_{2}\right)\right)$?
- $\alpha\left(x_{1}\right), \alpha\left(x_{5}\right), \alpha\left(x_{6}\right), \alpha\left(x_{7}\right), \ldots$ are irrelevant since those variable symbols occur in no formula.
- $\alpha\left(x_{4}\right)$ also is irrelevant: the variable occurs in the formula, but all occurrences are bound by a surrounding quantifier.

Free and Bound Variables: Motivation

Question:

■ Consider a signature with variable symbols $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ and an interpretation \mathcal{I}.

- Which parts of the definition of α are relevant to decide whether \mathcal{I}, $\alpha=\left(\forall x_{4}\left(\mathrm{R}\left(x_{4}, x_{2}\right) \vee\left(f\left(x_{3}\right)=x_{4}\right)\right) \vee \exists x_{3} S\left(x_{3}, x_{2}\right)\right)$?
- $\alpha\left(x_{1}\right), \alpha\left(x_{5}\right), \alpha\left(x_{6}\right), \alpha\left(x_{7}\right), \ldots$ are irrelevant since those variable symbols occur in no formula.
- $\alpha\left(x_{4}\right)$ also is irrelevant: the variable occurs in the formula, but all occurrences are bound by a surrounding quantifier.
■ \rightsquigarrow only assignments for free variables x_{2} and x_{3} relevant
German: gebundene und freie Variablen

Variables of a Term

Definition (Variables of a Term)

Let t be a term. The set of variables that occur in t, written as $\operatorname{var}(t)$, is defined as follows:

- $\operatorname{var}(x)=\{x\}$ for variable symbols x
- $\operatorname{var}(\mathrm{c})=\emptyset$
for constant symbols c
■ $\operatorname{var}\left(f\left(t_{1}, \ldots, t_{l}\right)\right)=\operatorname{var}\left(t_{1}\right) \cup \cdots \cup \operatorname{var}\left(t_{l}\right)$ for function terms
terminology: A term t with $\operatorname{var}(t)=\emptyset$ is called ground term.
German: Grundterm
example: $\operatorname{var}(\operatorname{product}(x, \operatorname{sum}(\mathrm{k}, y)))=$

Free and Bound Variables of a Formula

Definition (Free Variables)

Let φ be a predicate logic formula. The set of free variables of φ, written as free (φ), is defined as follows:

- $\operatorname{free}\left(\mathrm{P}\left(t_{1}, \ldots, t_{k}\right)\right)=\operatorname{var}\left(t_{1}\right) \cup \cdots \cup \operatorname{var}\left(t_{k}\right)$
- $\operatorname{free}\left(\left(t_{1}=t_{2}\right)\right)=\operatorname{var}\left(t_{1}\right) \cup \operatorname{var}\left(t_{2}\right)$
- $\operatorname{free}(\neg \varphi)=$ free (φ)
- $\operatorname{free}((\varphi \wedge \psi))=\operatorname{free}((\varphi \vee \psi))=\operatorname{free}(\varphi) \cup \operatorname{free}(\psi)$
- free $(\forall x \varphi)=\operatorname{free}(\exists x \varphi)=\operatorname{free}(\varphi) \backslash\{x\}$

Example: $\operatorname{free}\left(\left(\forall x_{4}\left(R\left(x_{4}, x_{2}\right) \vee\left(f\left(x_{3}\right)=x_{4}\right)\right) \vee \exists x_{3} S\left(x_{3}, x_{2}\right)\right)\right)$ $=$

Closed Formulas/Sentences

Note: Let φ be a formula and let α and β variable assignments with $\alpha(x)=\beta(x)$ for all free variables x of φ.
Then $\mathcal{I}, \alpha=\varphi$ iff $\mathcal{I}, \beta \models \varphi$.

Closed Formulas/Sentences

Note: Let φ be a formula and let α and β variable assignments with $\alpha(x)=\beta(x)$ for all free variables x of φ.
Then $\mathcal{I}, \alpha \models \varphi$ iff $\mathcal{I}, \beta \models \varphi$.
In particular, α is completely irrelevant if $\operatorname{free}(\varphi)=\emptyset$.

Closed Formulas/Sentences

Note: Let φ be a formula and let α and β variable assignments with $\alpha(x)=\beta(x)$ for all free variables x of φ.
Then $\mathcal{I}, \alpha=\varphi$ iff $\mathcal{I}, \beta \models \varphi$.
In particular, α is completely irrelevant if $\operatorname{free}(\varphi)=\emptyset$.

Definition (Closed Formulas/Sentences)

A formula φ without free variables (i. e., free $(\varphi)=\emptyset$) is called closed formula or sentence.

If φ is a sentence, then we often write $\mathcal{I} \models \varphi$ instead of $\mathcal{I}, \alpha \models \varphi$, since the definition of α does not influence whether φ is true under \mathcal{I} and α or not.

Formulas with at least one free variable are called open.
German: geschlossene Formel/Satz, offene Formel

Closed Formulas/Sentences: Examples

Question: Which of the following formulas are sentences?

- (Block(b) $\vee \neg$ Block(b))

■ ($\operatorname{Block}(x) \rightarrow(\operatorname{Block}(x) \vee \neg \operatorname{Block}(y)))$

- (Block $(a) \wedge \operatorname{Block}(b))$
- $\forall x(\operatorname{Block}(x) \rightarrow \operatorname{Red}(x))$

Questions

Questions?

Logical Consequences

Logic: Overview

Terminology for Formulas

The terminology we introduced for propositional logic similarly applies to predicate logic:

- Interpretation \mathcal{I} and variable assignment α form a model of the formula φ if $\mathcal{I}, \alpha \models \varphi$.
■ Formula φ is satisfiable if $\mathcal{I}, \alpha=\varphi$ for at least one \mathcal{I}, α.
■ Formula φ is falsifiable if $\mathcal{I}, \alpha \not \models \varphi$. for at least one \mathcal{I}, α
■ Formula φ is valid if $\mathcal{I}, \alpha \models \varphi$ for all \mathcal{I}, α.
■ Formula φ is unsatisfiable if $\mathcal{I}, \alpha \not \models \varphi$ for all \mathcal{I}, α.
■ Formulas φ and ψ are logically equivalent, written as $\varphi \equiv \psi$, if they have the same models.

German: Modell, erfüllbar, falsifizierbar, gültig, unerfüllbar, logisch äquivalent

Sets of Formulas: Semantics

Definition (Satisfied/True Sets of Formulas)

Let \mathcal{S} be a signature, Φ a set of formulas over \mathcal{S}, \mathcal{I} an interpretation for \mathcal{S} and α a variable assignment for \mathcal{S} and the universe of \mathcal{I}.

We say that \mathcal{I} and α satisfy the formulas Φ (also: Φ is true under \mathcal{I} and α), written as: $\mathcal{I}, \alpha \models \Phi$, if $\mathcal{I}, \alpha \equiv \varphi$ for all $\varphi \in \Phi$.

German: \mathcal{I} und α erfüllen $\boldsymbol{\Phi}, \boldsymbol{\Phi}$ ist wahr unter \mathcal{I} und α

Terminology for Sets of Formulas and Sentences

- Again, we use the same notations and concepts as in propositional logic.
Example:
- A set of formulas Φ is satisfiable if $\mathcal{I}, \alpha=\Phi$ for at least one \mathcal{I}, α.
- A set of formulas Φ (logically) implies formula ψ, written as $\Phi \models \psi$, if all models of Φ are models of ψ.

Terminology for Sets of Formulas and Sentences

- Again, we use the same notations and concepts as in propositional logic.
Example:
- A set of formulas Φ is satisfiable if $\mathcal{I}, \alpha=\Phi$ for at least one \mathcal{I}, α.
- A set of formulas Φ (logically) implies formula ψ, written as $\Phi \models \psi$, if all models of Φ are models of ψ.

■ All concepts can be used for the special case of sentences (or sets of sentences). In this case we usually omit α. Examples:

- Interpretation \mathcal{I} is a model of a sentence φ if $\mathcal{I} \models \varphi$.
- Sentence φ is unsatisfiable if $\mathcal{I} \not \vDash \varphi$ for all \mathcal{I}.

Terminology for Sets of Formulas and Sentences

- Again, we use the same notations and concepts as in propositional logic.
Example:
- A set of formulas Φ is satisfiable if $\mathcal{I}, \alpha=\Phi$ for at least one \mathcal{I}, α.
- A set of formulas Φ (logically) implies formula ψ, written as $\Phi=\psi$, if all models of Φ are models of ψ.

■ All concepts can be used for the special case of sentences (or sets of sentences). In this case we usually omit α. Examples:

- Interpretation \mathcal{I} is a model of a sentence φ if $\mathcal{I} \models \varphi$.
- Sentence φ is unsatisfiable if $\mathcal{I} \not \vDash \varphi$ for all \mathcal{I}.
- similarly:
- $\varphi \models \psi$ if $\{\varphi\} \models \psi$
- $\Phi \models \psi$ if $\Phi \models \psi$ for all $\psi \in \psi$

Questions

Questions?

Further Topics

Logic: Overview

Further Topics

Based on these definitions we could cover the same topics as in propositional logic:

■ important logical equivalences

- normal forms
- theorems about reasoning (deduction theorem etc.)

We briefly discuss some general results on those topics but will not go into detail.

Logical Equivalences

■ All logical equivalences of propositional logic also hold in predicate logic (e. g., $(\varphi \vee \psi) \equiv(\psi \vee \varphi)$). (Why?)
■ Additionally the following equivalences and implications hold:

$$
\begin{aligned}
(\forall x \varphi \wedge \forall x \psi) & \equiv \forall x(\varphi \wedge \psi) & & \\
(\forall x \varphi \vee \forall x \psi) & \equiv \forall x(\varphi \vee \psi) & & \text { but not vice versa } \\
(\forall x \varphi \wedge \psi) & \equiv \forall x(\varphi \wedge \psi) & & \text { if } x \notin \operatorname{free}(\psi) \\
(\forall x \varphi \vee \psi) & \equiv \forall x(\varphi \vee \psi) & & \text { if } x \notin \operatorname{free}(\psi) \\
\neg \forall x \varphi & \equiv \exists x \neg \varphi & & \\
\exists x(\varphi \vee \psi) & \equiv(\exists x \varphi \vee \exists x \psi) & & \\
\exists x(\varphi \wedge \psi) & \models(\exists x \varphi \wedge \exists x \psi) & & \text { but not vice versa } \\
(\exists x \varphi \vee \psi) & \equiv \exists x(\varphi \vee \psi) & & \text { if } x \notin \operatorname{free}(\psi) \\
(\exists x \varphi \wedge \psi) & \equiv \exists x(\varphi \wedge \psi) & & \text { if } x \notin \operatorname{free}(\psi) \\
\neg \exists x \varphi & \equiv \forall x \neg \varphi & &
\end{aligned}
$$

Normal Forms

Analogously to DNF and CNF for propositional logic there are several normal forms for predicate logic, such as

- negation normal form (NNF):
negation symbols (\neg) are only allowed in front of atoms
- prenex normal form:
quantifiers must form the outermost part of the formula
■ Skolem normal form: prenex normal form without existential quantifiers

German: Negationsnormalform, Pränexnormalform, Skolemnormalform

Normal Forms (ctd.)

Efficient methods transform formula φ

- into an equivalent formula in negation normal form,

■ into an equivalent formula in prenex normal form, or
■ into an equisatisfiable formula in Skolem normal form.
German: erfüllbarkeitsäquivalent

Questions

Questions?

Summary

Summary

bound vs. free variables:
■ bound vs. free variables: to decide if $\mathcal{I}, \alpha \models \varphi$, only free variables in α matter

- sentences (closed formulas): formulas without free variables

Once the basic definitions are in place, predicate logic
can be developed in the same way as propositional logic:

- logical consequences
- logical equivalences

■ normal forms
■ deduction theorem etc.

Other Logics

■ We considered first-order predicate logic.

- Second-order predicate logic allows quantifying over predicate symbols.
- There are intermediate steps, e. g. monadic second-order logic (all quantified predicates are unary).
■ Modal logics have new operators \square and \diamond.
- classical meaning: $\square \varphi$ for " φ is necessary", $\Delta \varphi$ for " φ is possible".
- temporal logic: $\square \varphi$ for " φ is always true in the future", $\Delta \varphi$ for " φ is true at some point in the future"
■ deontic logic: $\square \varphi$ for " φ is obligatory", $\Delta \varphi$ for " φ is permitted"

■ In fuzzy logic, formulas are not true or false but have values between 0 and 1 .

What's Next?

contents of this course:
A. background
\triangleright mathematical foundations and proof techniques
B. logic
\triangleright How can knowledge be represented?
How can reasoning be automated?
C. automata theory and formal languages
\triangleright What is a computation?
D. Turing computability
\triangleright What can be computed at all?
E. complexity theory
\triangleright What can be computed efficiently?
F. more computability theory
\triangleright Other models of computability

What's Next?

contents of this course:
A. background
\triangleright mathematical foundations and proof techniques
B. logic \checkmark
\triangleright How can knowledge be represented?
How can reasoning be automated?
C. automata theory and formal languages
\triangleright What is a computation?
D. Turing computability
\triangleright What can be computed at all?
E. complexity theory
\triangleright What can be computed efficiently?
F. more computability theory
\triangleright Other models of computability

