

Theory of Computer Science

B5. Predicate Logic II

Gabriele Röger

University of Basel

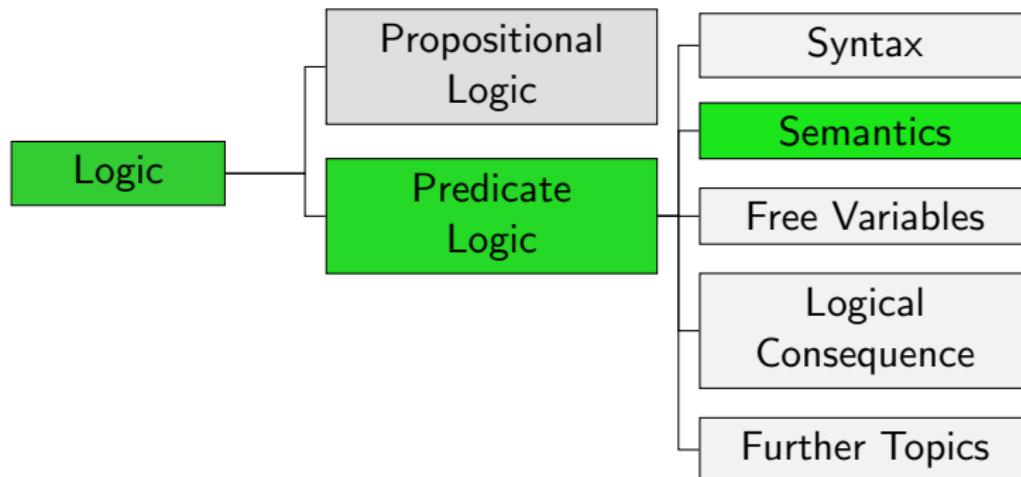
March 6, 2019

Theory of Computer Science

March 6, 2019 — B5. Predicate Logic II

B5.1 Semantics of Predicate Logic

B5.2 Free and Bound Variables


B5.3 Logical Consequences

B5.4 Further Topics

B5.5 Summary

B5.1 Semantics of Predicate Logic

Logic: Overview

Semantics: Motivation

- ▶ interpretations in propositional logic:
truth assignments for the **propositional variables**
- ▶ There are no propositional variables in predicate logic.
- ▶ instead: interpretation determines meaning
of the **constant, function and predicate symbols**.
- ▶ meaning of **variable symbols** not determined by interpretation
but by separate **variable assignment**.

Interpretations and Variable Assignments

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Interpretation, Variable Assignment)

An **interpretation** (for \mathcal{S}) is a pair $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ of:

- ▶ a non-empty set U called the **universe** and
- ▶ a function $\cdot^{\mathcal{I}}$ that assigns a meaning to the constant, function, and predicate symbols:
 - ▶ $c^{\mathcal{I}} \in U$ for constant symbols $c \in \mathcal{C}$
 - ▶ $f^{\mathcal{I}} : U^k \rightarrow U$ for k -ary function symbols $f \in \mathcal{F}$
 - ▶ $P^{\mathcal{I}} \subseteq U^k$ for k -ary predicate symbols $P \in \mathcal{P}$

A **variable assignment** (for \mathcal{S} and universe U)

is a function $\alpha : \mathcal{V} \rightarrow U$.

German: Interpretation, Variablenzuweisung, Universum (or Grundmenge)

Interpretations and Variable Assignments: Example

Example

signature: $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ with $\mathcal{V} = \{x, y, z\}$,
 $\mathcal{C} = \{\text{zero}, \text{one}\}$, $\mathcal{F} = \{\text{sum}, \text{product}\}$, $\mathcal{P} = \{\text{SquareNumber}\}$
 $\text{ar}(\text{sum}) = \text{ar}(\text{product}) = 2$, $\text{ar}(\text{SquareNumber}) = 1$

$\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ with

- ▶ $U = \{u_0, u_1, u_2, u_3, u_4, u_5, u_6\}$
- ▶ $\text{zero}^{\mathcal{I}} = u_0$
- ▶ $\text{one}^{\mathcal{I}} = u_1$
- ▶ $\text{sum}^{\mathcal{I}}(u_i, u_j) = u_{(i+j) \bmod 7}$ for all $i, j \in \{0, \dots, 6\}$
- ▶ $\text{product}^{\mathcal{I}}(u_i, u_j) = u_{(i \cdot j) \bmod 7}$ for all $i, j \in \{0, \dots, 6\}$
- ▶ $\text{SquareNumber}^{\mathcal{I}} = \{u_0, u_1, u_2, u_4\}$

$\alpha = \{x \mapsto u_5, y \mapsto u_5, z \mapsto u_0\}$

Semantics: Informally

Example: $(\forall x(\text{Block}(x) \rightarrow \text{Red}(x)) \wedge \text{Block}(a))$

“For all objects x : if x is a block, then x is red.

Also, the object called a is a block.”

- ▶ **Terms** are interpreted as **objects**.
- ▶ **Unary predicates** denote properties of objects
(to be a block, to be red, to be a square number, . . .)
- ▶ **General predicates** denote relations between objects
(to be someone’s child, to have a common divisor, . . .)
- ▶ **Universally quantified** formulas (“ \forall ”) are true
if they hold for **every** object in the universe.
- ▶ **Existentially quantified** formulas (“ \exists ”) are true
if they hold for **at least one** object in the universe.

Interpretations of Terms

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Interpretation of a Term)

Let $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ be an interpretation for \mathcal{S} ,
and let α be a variable assignment for \mathcal{S} and universe U .

Let t be a term over \mathcal{S} .

The **interpretation of t** under \mathcal{I} and α , written as $t^{\mathcal{I}, \alpha}$,
is the element of the universe U defined as follows:

- ▶ If $t = x$ with $x \in \mathcal{V}$ (t is a **variable term**):
 $x^{\mathcal{I}, \alpha} = \alpha(x)$
- ▶ If $t = c$ with $c \in \mathcal{C}$ (t is a **constant term**):
 $c^{\mathcal{I}, \alpha} = c^{\mathcal{I}}$
- ▶ If $t = f(t_1, \dots, t_k)$ (t is a **function term**):
 $f(t_1, \dots, t_k)^{\mathcal{I}, \alpha} = f^{\mathcal{I}}(t_1^{\mathcal{I}, \alpha}, \dots, t_k^{\mathcal{I}, \alpha})$

Interpretations of Terms: Example

Example

signature: $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$

with $\mathcal{V} = \{x, y, z\}$, $\mathcal{C} = \{\text{zero}, \text{one}\}$, $\mathcal{F} = \{\text{sum}, \text{product}\}$,
 $\text{ar}(\text{sum}) = \text{ar}(\text{product}) = 2$

$\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ with

- ▶ $U = \{u_0, u_1, u_2, u_3, u_4, u_5, u_6\}$
- ▶ $\text{zero}^{\mathcal{I}} = u_0$
- ▶ $\text{one}^{\mathcal{I}} = u_1$
- ▶ $\text{sum}^{\mathcal{I}}(u_i, u_j) = u_{(i+j) \bmod 7}$ for all $i, j \in \{0, \dots, 6\}$
- ▶ $\text{product}^{\mathcal{I}}(u_i, u_j) = u_{(i \cdot j) \bmod 7}$ for all $i, j \in \{0, \dots, 6\}$

$\alpha = \{x \mapsto u_5, y \mapsto u_5, z \mapsto u_0\}$

Interpretations of Terms: Example (ctd.)

Example (ctd.)

- ▶ $\text{zero}^{\mathcal{I}, \alpha} =$
- ▶ $y^{\mathcal{I}, \alpha} =$
- ▶ $\text{sum}(x, y)^{\mathcal{I}, \alpha} =$
- ▶ $\text{product}(\text{one}, \text{sum}(x, \text{zero}))^{\mathcal{I}, \alpha} =$

Semantics of Predicate Logic Formulas

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Formula is Satisfied or True)

Let $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ be an interpretation for \mathcal{S} ,
 and let α be a variable assignment for \mathcal{S} and universe U .
 We say that \mathcal{I} and α **satisfy** a predicate logic formula φ
 (also: φ is **true** under \mathcal{I} and α), written: $\mathcal{I}, \alpha \models \varphi$,
 according to the following inductive rules:

$$\mathcal{I}, \alpha \models P(t_1, \dots, t_k) \text{ iff } \langle t_1^{\mathcal{I}, \alpha}, \dots, t_k^{\mathcal{I}, \alpha} \rangle \in P^{\mathcal{I}}$$

$$\mathcal{I}, \alpha \models (t_1 = t_2) \text{ iff } t_1^{\mathcal{I}, \alpha} = t_2^{\mathcal{I}, \alpha}$$

$$\mathcal{I}, \alpha \models \neg \varphi \text{ iff } \mathcal{I}, \alpha \not\models \varphi$$

$$\mathcal{I}, \alpha \models (\varphi \wedge \psi) \text{ iff } \mathcal{I}, \alpha \models \varphi \text{ and } \mathcal{I}, \alpha \models \psi$$

$$\mathcal{I}, \alpha \models (\varphi \vee \psi) \text{ iff } \mathcal{I}, \alpha \models \varphi \text{ or } \mathcal{I}, \alpha \models \psi \quad \dots$$

German: \mathcal{I} und α erfüllen φ (also: φ ist wahr unter \mathcal{I} und α)

Semantics of Predicate Logic Formulas

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Formula is Satisfied or True)

...

$\mathcal{I}, \alpha \models \forall x \varphi$ iff $\mathcal{I}, \alpha[x := u] \models \varphi$ for all $u \in U$

$\mathcal{I}, \alpha \models \exists x \varphi$ iff $\mathcal{I}, \alpha[x := u] \models \varphi$ for at least one $u \in U$

where $\alpha[x := u]$ is the same variable assignment as α ,
except that it maps variable x to the value u .

Formally:

$$(\alpha[x := u])(z) = \begin{cases} u & \text{if } z = x \\ \alpha(z) & \text{if } z \neq x \end{cases}$$

Semantics: Example

Example

signature: $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$

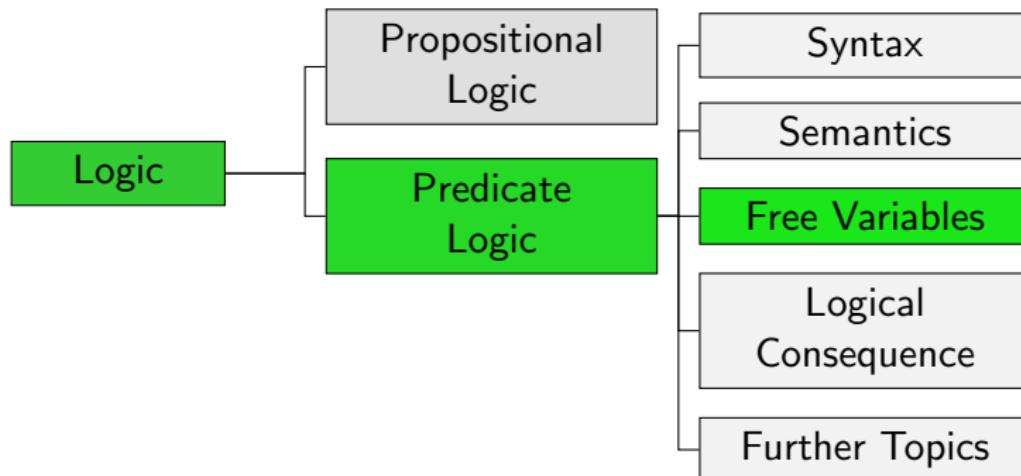
with $\mathcal{V} = \{x, y, z\}$, $\mathcal{C} = \{a, b\}$, $\mathcal{F} = \emptyset$, $\mathcal{P} = \{\text{Block}, \text{Red}\}$,
 $\text{ar}(\text{Block}) = \text{ar}(\text{Red}) = 1$.

$\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ with

- ▶ $U = \{u_1, u_2, u_3, u_4, u_5\}$
- ▶ $a^{\mathcal{I}} = u_1$
- ▶ $b^{\mathcal{I}} = u_3$
- ▶ $\text{Block}^{\mathcal{I}} = \{u_1, u_2\}$
- ▶ $\text{Red}^{\mathcal{I}} = \{u_1, u_2, u_3, u_5\}$

$\alpha = \{x \mapsto u_1, y \mapsto u_2, z \mapsto u_1\}$

Semantics: Example (ctd.)


Example (ctd.)

Questions:

- ▶ $\mathcal{I}, \alpha \models (\text{Block}(b) \vee \neg \text{Block}(b))?$
- ▶ $\mathcal{I}, \alpha \models (\text{Block}(x) \rightarrow (\text{Block}(x) \vee \neg \text{Block}(y)))?$
- ▶ $\mathcal{I}, \alpha \models (\text{Block}(a) \wedge \text{Block}(b))?$
- ▶ $\mathcal{I}, \alpha \models \forall x (\text{Block}(x) \rightarrow \text{Red}(x))?$

B5.2 Free and Bound Variables

Logic: Overview

Free and Bound Variables: Motivation

Question:

- ▶ Consider a signature with variable symbols $\{x_1, x_2, x_3, \dots\}$ and an interpretation \mathcal{I} .
- ▶ Which parts of the definition of α are relevant to decide whether $\mathcal{I}, \alpha \models (\forall x_4(R(x_4, x_2) \vee (f(x_3) = x_4)) \vee \exists x_3 S(x_3, x_2))$?
- ▶ $\alpha(x_1), \alpha(x_5), \alpha(x_6), \alpha(x_7), \dots$ are irrelevant since those variable symbols occur in no formula.
- ▶ $\alpha(x_4)$ also is irrelevant: the variable occurs in the formula, but all occurrences are bound by a surrounding quantifier.
- ▶ \rightsquigarrow only assignments for free variables x_2 and x_3 relevant

German: gebundene und freie Variablen

Variables of a Term

Definition (Variables of a Term)

Let t be a term. The set of **variables** that occur in t , written as $\text{var}(t)$, is defined as follows:

- ▶ $\text{var}(x) = \{x\}$
for variable symbols x
- ▶ $\text{var}(c) = \emptyset$
for constant symbols c
- ▶ $\text{var}(f(t_1, \dots, t_l)) = \text{var}(t_1) \cup \dots \cup \text{var}(t_l)$
for function terms

terminology: A term t with $\text{var}(t) = \emptyset$ is called **ground term**.

German: Grundterm

example: $\text{var}(\text{product}(x, \text{sum}(k, y))) =$

Free and Bound Variables of a Formula

Definition (Free Variables)

Let φ be a predicate logic formula. The set of **free variables** of φ , written as $\text{free}(\varphi)$, is defined as follows:

- ▶ $\text{free}(P(t_1, \dots, t_k)) = \text{var}(t_1) \cup \dots \cup \text{var}(t_k)$
- ▶ $\text{free}(t_1 = t_2) = \text{var}(t_1) \cup \text{var}(t_2)$
- ▶ $\text{free}(\neg\varphi) = \text{free}(\varphi)$
- ▶ $\text{free}((\varphi \wedge \psi)) = \text{free}((\varphi \vee \psi)) = \text{free}(\varphi) \cup \text{free}(\psi)$
- ▶ $\text{free}(\forall x \varphi) = \text{free}(\exists x \varphi) = \text{free}(\varphi) \setminus \{x\}$

Example: $\text{free}((\forall x_4(R(x_4, x_2) \vee (f(x_3) = x_4)) \vee \exists x_3 S(x_3, x_2)))$

=

Closed Formulas/Sentences

Note: Let φ be a formula and let α and β variable assignments with $\alpha(x) = \beta(x)$ for all free variables x of φ .

Then $\mathcal{I}, \alpha \models \varphi$ iff $\mathcal{I}, \beta \models \varphi$.

In particular, α is **completely irrelevant** if $\text{free}(\varphi) = \emptyset$.

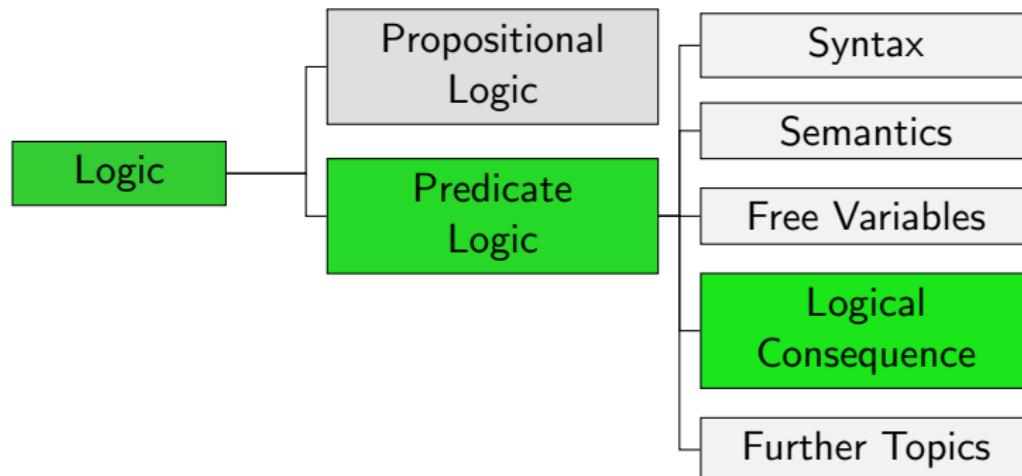
Definition (Closed Formulas/Sentences)

A formula φ without free variables (i. e., $\text{free}(\varphi) = \emptyset$) is called **closed formula** or **sentence**.

If φ is a sentence, then we often write $\mathcal{I} \models \varphi$ instead of $\mathcal{I}, \alpha \models \varphi$, since the definition of α does not influence whether φ is true under \mathcal{I} and α or not.

Formulas with at least one free variable are called **open**.

German: geschlossene Formel/Satz, offene Formel


Closed Formulas/Sentences: Examples

Question: Which of the following formulas are sentences?

- ▶ $(\text{Block}(b) \vee \neg \text{Block}(b))$
- ▶ $(\text{Block}(x) \rightarrow (\text{Block}(x) \vee \neg \text{Block}(y)))$
- ▶ $(\text{Block}(a) \wedge \text{Block}(b))$
- ▶ $\forall x(\text{Block}(x) \rightarrow \text{Red}(x))$

B5.3 Logical Consequences

Logic: Overview

Terminology for Formulas

The terminology we introduced for propositional logic similarly applies to predicate logic:

- ▶ Interpretation \mathcal{I} and variable assignment α form a **model** of the formula φ if $\mathcal{I}, \alpha \models \varphi$.
- ▶ Formula φ is **satisfiable** if $\mathcal{I}, \alpha \models \varphi$ for at least one \mathcal{I}, α .
- ▶ Formula φ is **falsifiable** if $\mathcal{I}, \alpha \not\models \varphi$ for at least one \mathcal{I}, α .
- ▶ Formula φ is **valid** if $\mathcal{I}, \alpha \models \varphi$ for all \mathcal{I}, α .
- ▶ Formula φ is **unsatisfiable** if $\mathcal{I}, \alpha \not\models \varphi$ for all \mathcal{I}, α .
- ▶ Formulas φ and ψ are **logically equivalent**, written as $\varphi \equiv \psi$, if they have the same models.

German: Modell, erfüllbar, falsifizierbar, gültig, unerfüllbar,
logisch äquivalent

Sets of Formulas: Semantics

Definition (Satisfied/True Sets of Formulas)

Let \mathcal{S} be a signature, Φ a set of formulas over \mathcal{S} ,
 \mathcal{I} an interpretation for \mathcal{S} and α a variable assignment for \mathcal{S}
and the universe of \mathcal{I} .

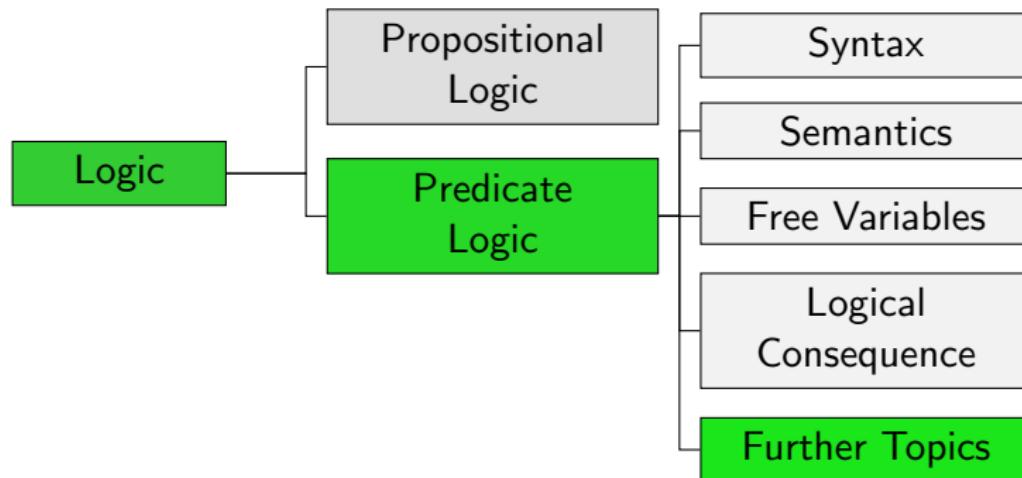
We say that \mathcal{I} and α **satisfy** the formulas Φ
(also: Φ is **true** under \mathcal{I} and α), written as: $\mathcal{I}, \alpha \models \Phi$,
if $\mathcal{I}, \alpha \models \varphi$ for all $\varphi \in \Phi$.

German: \mathcal{I} und α erfüllen Φ , Φ ist wahr unter \mathcal{I} und α

Terminology for Sets of Formulas and Sentences

- ▶ Again, we use the same notations and concepts as in propositional logic.

Example:


- ▶ A set of formulas Φ is satisfiable if $\mathcal{I}, \alpha \models \Phi$ for at least one \mathcal{I}, α .
- ▶ A set of formulas Φ (logically) implies formula ψ , written as $\Phi \models \psi$, if all models of Φ are models of ψ .
- ▶ All concepts can be used for the special case of **sentences** (or sets of sentences). In this case we usually omit α .

Examples:

- ▶ Interpretation \mathcal{I} is a **model** of a sentence φ if $\mathcal{I} \models \varphi$.
- ▶ Sentence φ is **unsatisfiable** if $\mathcal{I} \not\models \varphi$ for all \mathcal{I} .
- ▶ similarly:
 - ▶ $\varphi \models \psi$ if $\{\varphi\} \models \psi$
 - ▶ $\Phi \models \Psi$ if $\Phi \models \psi$ for all $\psi \in \Psi$

B5.4 Further Topics

Logic: Overview

Further Topics

Based on these definitions we could cover the same topics as in propositional logic:

- ▶ important **logical equivalences**
- ▶ **normal forms**
- ▶ theorems about reasoning (deduction theorem etc.)

We briefly discuss some general results on those topics but will not go into detail.

Logical Equivalences

- ▶ All **logical equivalences of propositional logic** also hold in predicate logic (e.g., $(\varphi \vee \psi) \equiv (\psi \vee \varphi)$). ([Why?](#))
- ▶ Additionally the following equivalences and implications hold:

$$(\forall x \varphi \wedge \forall x \psi) \equiv \forall x(\varphi \wedge \psi)$$

$$(\forall x \varphi \vee \forall x \psi) \models \forall x(\varphi \vee \psi) \quad \text{but not vice versa}$$

$$(\forall x \varphi \wedge \psi) \equiv \forall x(\varphi \wedge \psi) \quad \text{if } x \notin \text{free}(\psi)$$

$$(\forall x \varphi \vee \psi) \equiv \forall x(\varphi \vee \psi) \quad \text{if } x \notin \text{free}(\psi)$$

$$\neg \forall x \varphi \equiv \exists x \neg \varphi$$

$$\exists x(\varphi \vee \psi) \equiv (\exists x \varphi \vee \exists x \psi)$$

$$\exists x(\varphi \wedge \psi) \models (\exists x \varphi \wedge \exists x \psi) \quad \text{but not vice versa}$$

$$(\exists x \varphi \vee \psi) \equiv \exists x(\varphi \vee \psi) \quad \text{if } x \notin \text{free}(\psi)$$

$$(\exists x \varphi \wedge \psi) \equiv \exists x(\varphi \wedge \psi) \quad \text{if } x \notin \text{free}(\psi)$$

$$\neg \exists x \varphi \equiv \forall x \neg \varphi$$

Normal Forms

Analogously to DNF and CNF for propositional logic there are several normal forms for predicate logic, such as

- ▶ **negation normal form (NNF):**
negation symbols (\neg) are only allowed in front of atoms
- ▶ **prenex normal form:**
quantifiers must form the outermost part of the formula
- ▶ **Skolem normal form:**
prenex normal form without existential quantifiers

German: Negationsnormalform, Pränexnormalform, Skolemnormalform

Normal Forms (ctd.)

Efficient methods transform formula φ

- ▶ into an **equivalent** formula in **negation normal form**,
- ▶ into an **equivalent** formula in **prenex normal form**, or
- ▶ into an **equisatisfiable** formula in **Skolem normal form**.

German: erfüllbarkeitsäquivalent

B5.5 Summary

Summary

bound vs. free variables:

- ▶ **bound** vs. **free** variables: to decide if $\mathcal{I}, \alpha \models \varphi$, only free variables in α matter
- ▶ **sentences** (closed formulas): formulas without free variables

Once the basic definitions are in place, predicate logic can be developed in the same way as propositional logic:

- ▶ **logical consequences**
- ▶ **logical equivalences**
- ▶ **normal forms**
- ▶ **deduction theorem** etc.

Other Logics

- ▶ We considered **first-order** predicate logic.
- ▶ **Second-order** predicate logic allows quantifying over predicate symbols.
- ▶ There are intermediate steps, e. g. monadic second-order logic (all quantified predicates are unary).
- ▶ **Modal logics** have new operators \Box and \Diamond .
 - ▶ classical meaning: $\Box\varphi$ for “ φ is necessary”,
 $\Diamond\varphi$ for “ φ is possible”.
 - ▶ temporal logic: $\Box\varphi$ for “ φ is always true in the future”,
 $\Diamond\varphi$ for “ φ is true at some point in the future”
 - ▶ deontic logic: $\Box\varphi$ for “ φ is obligatory”,
 $\Diamond\varphi$ for “ φ is permitted”
 - ▶ ...
- ▶ In **fuzzy logic**, formulas are not true or false but have values between 0 and 1.

What's Next?

contents of this course:

- A. **background ✓**
 - ▷ mathematical foundations and proof techniques
- B. **logic ✓**
 - ▷ How can knowledge be represented?
 - How can reasoning be automated?
- C. **automata theory and formal languages**
 - ▷ What is a computation?
- D. **Turing computability**
 - ▷ What can be computed at all?
- E. **complexity theory**
 - ▷ What can be computed efficiently?
- F. **more computability theory**
 - ▷ Other models of computability