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Gabriele Röger (University of Basel) Theory of Computer Science March 6, 2019 1 / 37



Theory of Computer Science
March 6, 2019 — B5. Predicate Logic II

B5.1 Semantics of Predicate Logic

B5.2 Free and Bound Variables

B5.3 Logical Consequences

B5.4 Further Topics

B5.5 Summary
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B5. Predicate Logic II Semantics of Predicate Logic

Semantics: Motivation

I interpretations in propositional logic:
truth assignments for the propositional variables

I There are no propositional variables in predicate logic.

I instead: interpretation determines meaning
of the constant, function and predicate symbols.

I meaning of variable symbols not determined by interpretation
but by separate variable assignment.
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B5. Predicate Logic II Semantics of Predicate Logic

Interpretations and Variable Assignments

Let S = 〈V, C,F ,P〉 be a signature.

Definition (Interpretation, Variable Assignment)

An interpretation (for S) is a pair I = 〈U, ·I〉 of:

I a non-empty set U called the universe and
I a function ·I that assigns a meaning to the constant,

function, and predicate symbols:
I cI ∈ U for constant symbols c ∈ C
I fI : Uk → U for k-ary function symbols f ∈ F
I PI ⊆ Uk for k-ary predicate symbols P ∈ P

A variable assignment (for S and universe U)
is a function α : V → U.

German: Interpretation, Variablenzuweisung, Universum (or Grundmenge)
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B5. Predicate Logic II Semantics of Predicate Logic

Interpretations and Variable Assignments: Example

Example

signature: S = 〈V, C,F ,P〉 with V = {x , y , z},
C = {zero, one}, F = {sum, product}, P = {SquareNumber}
ar(sum) = ar(product) = 2, ar(SquareNumber) = 1

I = 〈U, ·I〉 with

I U = {u0, u1, u2, u3, u4, u5, u6}
I zeroI = u0
I oneI = u1
I sumI(ui , uj) = u(i+j) mod 7 for all i , j ∈ {0, . . . , 6}
I productI(ui , uj) = u(i ·j) mod 7 for all i , j ∈ {0, . . . , 6}
I SquareNumberI = {u0, u1, u2, u4}

α = {x 7→ u5, y 7→ u5, z 7→ u0}
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B5. Predicate Logic II Semantics of Predicate Logic

Semantics: Informally

Example: (∀x(Block(x)→ Red(x)) ∧ Block(a))
“For all objects x : if x is a block, then x is red.
Also, the object called a is a block.”

I Terms are interpreted as objects.

I Unary predicates denote properties of objects
(to be a block, to be red, to be a square number, . . . )

I General predicates denote relations between objects
(to be someone’s child, to have a common divisor, . . . )

I Universally quantified formulas (“∀”) are true
if they hold for every object in the universe.

I Existentially quantified formulas (“∃”) are true
if they hold for at least one object in the universe.
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B5. Predicate Logic II Semantics of Predicate Logic

Interpretations of Terms

Let S = 〈V, C,F ,P〉 be a signature.

Definition (Interpretation of a Term)

Let I = 〈U, ·I〉 be an interpretation for S,
and let α be a variable assignment for S and universe U.

Let t be a term over S.
The interpretation of t under I and α, written as tI,α,
is the element of the universe U defined as follows:

I If t = x with x ∈ V (t is a variable term):
xI,α = α(x)

I If t = c with c ∈ C (t is a constant term):
cI,α = cI

I If t = f(t1, . . . , tk) (t is a function term):
f(t1, . . . , tk)I,α = fI(tI,α1 , . . . , tI,αk )

Gabriele Röger (University of Basel) Theory of Computer Science March 6, 2019 9 / 37



B5. Predicate Logic II Semantics of Predicate Logic

Interpretations of Terms: Example

Example

signature: S = 〈V, C,F ,P〉
with V = {x , y , z}, C = {zero, one}, F = {sum, product},
ar(sum) = ar(product) = 2

I = 〈U, ·I〉 with

I U = {u0, u1, u2, u3, u4, u5, u6}
I zeroI = u0
I oneI = u1
I sumI(ui , uj) = u(i+j) mod 7 for all i , j ∈ {0, . . . , 6}
I productI(ui , uj) = u(i ·j) mod 7 for all i , j ∈ {0, . . . , 6}

α = {x 7→ u5, y 7→ u5, z 7→ u0}
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B5. Predicate Logic II Semantics of Predicate Logic

Interpretations of Terms: Example (ctd.)

Example (ctd.)

I zeroI,α =

I yI,α =

I sum(x , y)I,α =

I product(one, sum(x , zero))I,α =
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B5. Predicate Logic II Semantics of Predicate Logic

Semantics of Predicate Logic Formulas

Let S = 〈V, C,F ,P〉 be a signature.

Definition (Formula is Satisfied or True)

Let I = 〈U, ·I〉 be an interpretation for S,
and let α be a variable assignment for S and universe U.
We say that I and α satisfy a predicate logic formula ϕ
(also: ϕ is true under I and α), written: I, α |= ϕ,
according to the following inductive rules:

I, α |= P(t1, . . . , tk) iff 〈tI,α1 , . . . , tI,αk 〉 ∈ PI

I, α |= (t1 = t2) iff tI,α1 = tI,α2

I, α |= ¬ϕ iff I, α 6|= ϕ

I, α |= (ϕ ∧ ψ) iff I, α |= ϕ and I, α |= ψ

I, α |= (ϕ ∨ ψ) iff I, α |= ϕ or I, α |= ψ . . .

German: I und α erfüllen ϕ (also: ϕ ist wahr unter I und α)
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B5. Predicate Logic II Semantics of Predicate Logic

Semantics of Predicate Logic Formulas

Let S = 〈V, C,F ,P〉 be a signature.

Definition (Formula is Satisfied or True)
. . .

I, α |= ∀xϕ iff I, α[x := u] |= ϕ for all u ∈ U

I, α |= ∃xϕ iff I, α[x := u] |= ϕ for at least one u ∈ U

where α[x := u] is the same variable assignment as α,
except that it maps variable x to the value u.
Formally:

(α[x := u])(z) =

{
u if z = x

α(z) if z 6= x
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B5. Predicate Logic II Semantics of Predicate Logic

Semantics: Example

Example

signature: S = 〈V, C,F ,P〉
with V = {x , y , z}, C = {a, b}, F = ∅, P = {Block,Red},
ar(Block) = ar(Red) = 1.

I = 〈U, ·I〉 with

I U = {u1, u2, u3, u4, u5}
I aI = u1
I bI = u3
I BlockI = {u1, u2}
I RedI = {u1, u2, u3, u5}

α = {x 7→ u1, y 7→ u2, z 7→ u1}
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B5. Predicate Logic II Semantics of Predicate Logic

Semantics: Example (ctd.)

Example (ctd.)

Questions:

I I, α |= (Block(b) ∨ ¬Block(b))?

I I, α |= (Block(x)→ (Block(x) ∨ ¬Block(y)))?

I I, α |= (Block(a) ∧ Block(b))?

I I, α |= ∀x(Block(x)→ Red(x))?
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B5.2 Free and Bound Variables
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B5. Predicate Logic II Free and Bound Variables

Free and Bound Variables: Motivation

Question:

I Consider a signature with variable symbols {x1, x2, x3, . . . }
and an interpretation I.

I Which parts of the definition of α are relevant to decide
whether I, α |= (∀x4(R(x4, x2) ∨ (f(x3) = x4)) ∨ ∃x3S(x3, x2))?

I α(x1), α(x5), α(x6), α(x7), . . . are irrelevant
since those variable symbols occur in no formula.

I α(x4) also is irrelevant: the variable occurs in the formula,
but all occurrences are bound by a surrounding quantifier.

I  only assignments for free variables x2 and x3 relevant

German: gebundene und freie Variablen
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B5. Predicate Logic II Free and Bound Variables

Variables of a Term

Definition (Variables of a Term)

Let t be a term. The set of variables that occur in t,
written as var(t), is defined as follows:

I var(x) = {x}
for variable symbols x

I var(c) = ∅
for constant symbols c

I var(f(t1, . . . , tl)) = var(t1) ∪ · · · ∪ var(tl)
for function terms

terminology: A term t with var(t) = ∅ is called ground term.
German: Grundterm

example: var(product(x , sum(k, y))) =
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B5. Predicate Logic II Free and Bound Variables

Free and Bound Variables of a Formula

Definition (Free Variables)

Let ϕ be a predicate logic formula. The set of free variables of ϕ,
written as free(ϕ), is defined as follows:

I free(P(t1, . . . , tk)) = var(t1) ∪ · · · ∪ var(tk)

I free((t1 = t2)) = var(t1) ∪ var(t2)

I free(¬ϕ) = free(ϕ)

I free((ϕ ∧ ψ)) = free((ϕ ∨ ψ)) = free(ϕ) ∪ free(ψ)

I free(∀x ϕ) = free(∃x ϕ) = free(ϕ) \ {x}

Example: free((∀x4(R(x4, x2) ∨ (f(x3) = x4)) ∨ ∃x3S(x3, x2)))
=
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B5. Predicate Logic II Free and Bound Variables

Closed Formulas/Sentences

Note: Let ϕ be a formula and let α and β variable assignments
with α(x) = β(x) for all free variables x of ϕ.

Then I, α |= ϕ iff I, β |= ϕ.

In particular, α is completely irrelevant if free(ϕ) = ∅.

Definition (Closed Formulas/Sentences)

A formula ϕ without free variables (i. e., free(ϕ) = ∅)
is called closed formula or sentence.

If ϕ is a sentence, then we often write I |= ϕ
instead of I, α |= ϕ, since the definition of α does not influence
whether ϕ is true under I and α or not.

Formulas with at least one free variable are called open.

German: geschlossene Formel/Satz, offene Formel
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B5. Predicate Logic II Free and Bound Variables

Closed Formulas/Sentences: Examples

Question: Which of the following formulas are sentences?

I (Block(b) ∨ ¬Block(b))

I (Block(x)→ (Block(x) ∨ ¬Block(y)))

I (Block(a) ∧ Block(b))

I ∀x(Block(x)→ Red(x))
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B5. Predicate Logic II Logical Consequences

B5.3 Logical Consequences
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B5. Predicate Logic II Logical Consequences
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B5. Predicate Logic II Logical Consequences

Terminology for Formulas

The terminology we introduced for propositional logic
similarly applies to predicate logic:

I Interpretation I and variable assignment α
form a model of the formula ϕ if I, α |= ϕ.

I Formula ϕ is satisfiable if I, α |= ϕ for at least one I, α.

I Formula ϕ is falsifiable if I, α 6|= ϕ. for at least one I, α
I Formula ϕ is valid if I, α |= ϕ for all I, α.

I Formula ϕ is unsatisfiable if I, α 6|= ϕ for all I, α.

I Formulas ϕ and ψ are logically equivalent, written as ϕ ≡ ψ,
if they have the same models.

German: Modell, erfüllbar, falsifizierbar, gültig, unerfüllbar,

German: logisch äquivalent
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B5. Predicate Logic II Logical Consequences

Sets of Formulas: Semantics

Definition (Satisfied/True Sets of Formulas)

Let S be a signature, Φ a set of formulas over S,
I an interpretation for S and α a variable assignment for S
and the universe of I.

We say that I and α satisfy the formulas Φ
(also: Φ is true under I and α), written as: I, α |= Φ,
if I, α |= ϕ for all ϕ ∈ Φ.

German: I und α erfüllen Φ, Φ ist wahr unter I und α
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B5. Predicate Logic II Logical Consequences

Terminology for Sets of Formulas and Sentences

I Again, we use the same notations and concepts
as in propositional logic.

Example:
I A set of formulas Φ is satisfiable

if I, α |= Φ for at least one I, α.
I A set of formulas Φ (logically) implies formula ψ,

written as Φ |= ψ, if all models of Φ are models of ψ.

I All concepts can be used for the special case of sentences
(or sets of sentences). In this case we usually omit α.

Examples:
I Interpretation I is a model of a sentence ϕ if I |= ϕ.
I Sentence ϕ is unsatisfiable if I 6|= ϕ for all I.

I similarly:
I ϕ |= ψ if {ϕ} |= ψ
I Φ |= Ψ if Φ |= ψ for all ψ ∈ Ψ

Gabriele Röger (University of Basel) Theory of Computer Science March 6, 2019 27 / 37



B5. Predicate Logic II Further Topics

B5.4 Further Topics
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B5. Predicate Logic II Further Topics
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B5. Predicate Logic II Further Topics

Further Topics

Based on these definitions we could cover the same topics
as in propositional logic:

I important logical equivalences

I normal forms

I theorems about reasoning (deduction theorem etc.)

We briefly discuss some general results on those topics
but will not go into detail.
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B5. Predicate Logic II Further Topics

Logical Equivalences

I All logical equivalences of propositional logic
also hold in predicate logic (e. g., (ϕ∨ ψ) ≡ (ψ ∨ ϕ)). (Why?)

I Additionally the following equivalences and implications hold:

(∀xϕ ∧ ∀xψ) ≡ ∀x(ϕ ∧ ψ)
(∀xϕ ∨ ∀xψ) |= ∀x(ϕ ∨ ψ) but not vice versa

(∀xϕ ∧ ψ) ≡ ∀x(ϕ ∧ ψ) if x /∈ free(ψ)
(∀xϕ ∨ ψ) ≡ ∀x(ϕ ∨ ψ) if x /∈ free(ψ)
¬∀xϕ ≡ ∃x¬ϕ

∃x(ϕ ∨ ψ) ≡ (∃xϕ ∨ ∃xψ)
∃x(ϕ ∧ ψ) |= (∃xϕ ∧ ∃xψ) but not vice versa
(∃xϕ ∨ ψ) ≡ ∃x(ϕ ∨ ψ) if x /∈ free(ψ)
(∃xϕ ∧ ψ) ≡ ∃x(ϕ ∧ ψ) if x /∈ free(ψ)
¬∃xϕ ≡ ∀x¬ϕ
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B5. Predicate Logic II Further Topics

Normal Forms

Analogously to DNF and CNF for propositional logic
there are several normal forms for predicate logic, such as

I negation normal form (NNF):
negation symbols (¬) are only allowed in front of atoms

I prenex normal form:
quantifiers must form the outermost part of the formula

I Skolem normal form:
prenex normal form without existential quantifiers

German: Negationsnormalform, Pränexnormalform, Skolemnormalform
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B5. Predicate Logic II Further Topics

Normal Forms (ctd.)

Efficient methods transform formula ϕ

I into an equivalent formula in negation normal form,

I into an equivalent formula in prenex normal form, or

I into an equisatisfiable formula in Skolem normal form.

German: erfüllbarkeitsäquivalent
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B5. Predicate Logic II Summary

B5.5 Summary

Gabriele Röger (University of Basel) Theory of Computer Science March 6, 2019 34 / 37



B5. Predicate Logic II Summary

Summary

bound vs. free variables:

I bound vs. free variables: to decide if I, α |= ϕ, only free
variables in α matter

I sentences (closed formulas): formulas without free variables

Once the basic definitions are in place, predicate logic
can be developed in the same way as propositional logic:

I logical consequences

I logical equivalences

I normal forms

I deduction theorem etc.
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B5. Predicate Logic II Summary

Other Logics

I We considered first-order predicate logic.

I Second-order predicate logic allows
quantifying over predicate symbols.

I There are intermediate steps, e. g. monadic second-order logic
(all quantified predicates are unary).

I Modal logics have new operators � and ♦.
I classical meaning: �ϕ for “ϕ is necessary”,

classical meaning: ♦ϕ for “ϕ is possible”.
I temporal logic: �ϕ for “ϕ is always true in the future”,

temporal logic: ♦ϕ for “ϕ is true at some point in the future”
I deontic logic: �ϕ for “ϕ is obligatory”,

deontic logic: ♦ϕ for “ϕ is permitted”
I . . .

I In fuzzy logic, formulas are not true or false
but have values between 0 and 1.
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B5. Predicate Logic II Summary

What’s Next?

contents of this course:

A. background X
. mathematical foundations and proof techniques

B. logic X
. How can knowledge be represented?
. How can reasoning be automated?

C. automata theory and formal languages
. What is a computation?

D. Turing computability
. What can be computed at all?

E. complexity theory
. What can be computed efficiently?

F. more computability theory
. Other models of computability
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