

Theory of Computer Science

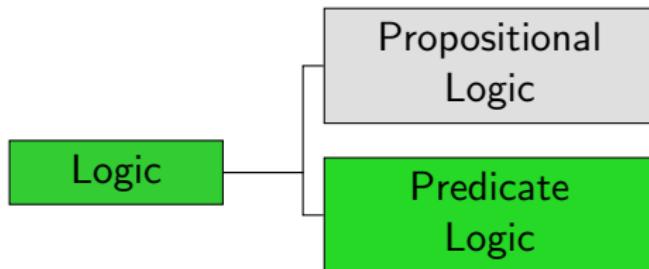
B4. Predicate Logic I

Gabriele Röger

University of Basel

March 4, 2019

Logic: Overview



Motivation

Limits of Propositional Logic

Cannot well be expressed in propositional logic:

- “Everyone who does the exercises passes the exam.”
- “If someone with administrator privileges presses ‘delete’, all data is gone.”
- “Everyone has a mother.”
- “If someone is the father of some person, the person is his child.”

Limits of Propositional Logic

Cannot well be expressed in propositional logic:

- “Everyone who does the exercises passes the exam.”
- “If someone with administrator privileges presses ‘delete’, all data is gone.”
- “Everyone has a mother.”
- “If someone is the father of some person, the person is his child.”

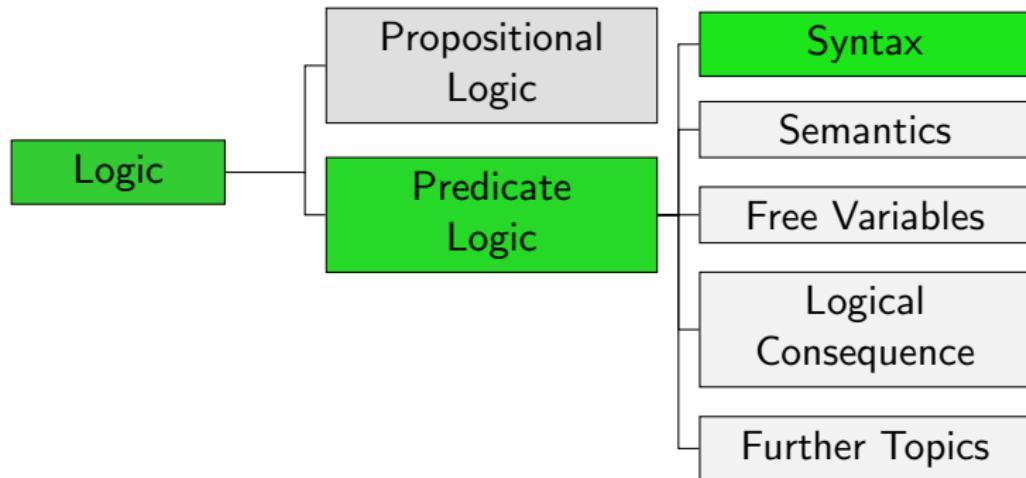
▷ need more expressive logic

~~ predicate logic

German: Prädikatenlogik

Syntax of Predicate Logic

Logic: Overview



Syntax: Building Blocks

- **Signatures** define allowed symbols.
analogy: variable set A in propositional logic
- **Terms** are associated with objects by the semantics.
no analogy in propositional logic
- **Formulas** are associated with truth values (true or false)
by the semantics.
analogy: formulas in propositional logic

German: Signatur, Term, Formel

Signatures: Definition

Definition (Signature)

A **signature** (of predicate logic) is a 4-tuple $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ consisting of the following four disjoint sets:

- a finite or countable set \mathcal{V} of **variable symbols**
- a finite or countable set \mathcal{C} of **constant symbols**
- a finite or countable set \mathcal{F} of **function symbols**
- a finite or countable set \mathcal{P} of **predicate symbols**
(or **relation symbols**)

Every function symbol $f \in \mathcal{F}$ and predicate symbol $P \in \mathcal{P}$ has an associated **arity** $ar(f), ar(P) \in \mathbb{N}_0$ (number of arguments).

German: Variablen-, Konstanten-, Funktions-, Prädikat- und Relationssymbole; Stelligkeit

Signatures: Terminology and Conventions

terminology:

- *k-ary* (function or predicate) symbol:
symbol s with arity $ar(s) = k$.
- also: *unary*, *binary*, *ternary*

German: *k-stellig*, *unär*, *binär*, *ternär*

conventions (in this lecture):

- variable symbols written in *italics*,
other symbols upright.
- predicate symbols begin with capital letter,
other symbols with lower-case letters

Signatures: Examples

Example: Arithmetic

- $\mathcal{V} = \{x, y, z, x_1, x_2, x_3, \dots\}$
- $\mathcal{C} = \{\text{zero}, \text{one}\}$
- $\mathcal{F} = \{\text{sum}, \text{product}\}$
- $\mathcal{P} = \{\text{Positive}, \text{SquareNumber}\}$

$ar(\text{sum}) = ar(\text{product}) = 2$, $ar(\text{Positive}) = ar(\text{SquareNumber}) = 1$

Signatures: Examples

Example: Genealogy

- $\mathcal{V} = \{x, y, z, x_1, x_2, x_3, \dots\}$
- $\mathcal{C} = \{\text{roger-federer}, \text{lisa-simpson}\}$
- $\mathcal{F} = \emptyset$
- $\mathcal{P} = \{\text{Female}, \text{Male}, \text{Parent}\}$

$ar(\text{Female}) = ar(\text{Male}) = 1, ar(\text{Parent}) = 2$

Terms: Definition

Definition (Term)

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

A **term** (over \mathcal{S}) is inductively constructed according to the following rules:

- Every variable symbol $v \in \mathcal{V}$ is a term.
- Every constant symbol $c \in \mathcal{C}$ is a term.
- If t_1, \dots, t_k are terms and $f \in \mathcal{F}$ is a function symbol with arity k , then $f(t_1, \dots, t_k)$ is a term.

German: Term

Terms: Definition

Definition (Term)

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

A **term** (over \mathcal{S}) is inductively constructed according to the following rules:

- Every variable symbol $v \in \mathcal{V}$ is a term.
- Every constant symbol $c \in \mathcal{C}$ is a term.
- If t_1, \dots, t_k are terms and $f \in \mathcal{F}$ is a function symbol with arity k , then $f(t_1, \dots, t_k)$ is a term.

German: Term

examples:

- x_4
- lisa-simpson
- $\text{sum}(x_3, \text{product}(\text{one}, x_5))$

Formulas: Definition

Definition (Formula)

For a signature $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ the set of predicate logic formulas (over \mathcal{S}) is inductively defined as follows:

- If t_1, \dots, t_k are terms (over \mathcal{S}) and $P \in \mathcal{P}$ is a k -ary predicate symbol, then the **atomic formula** (or the **atom**) $P(t_1, \dots, t_k)$ is a formula over \mathcal{S} .
- If t_1 and t_2 are terms (over \mathcal{S}), then the **identity** ($t_1 = t_2$) is a formula over \mathcal{S} .
- If $x \in \mathcal{V}$ is a variable symbol and φ a formula over \mathcal{S} , then the **universal quantification** $\forall x \varphi$ and the **existential quantification** $\exists x \varphi$ are formulas over \mathcal{S} .

...

German: atomare Formel, Atom, Identität, Allquantifizierung, Existenzquantifizierung

Formulas: Definition

Definition (Formula)

For a signature $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ the set of predicate logic formulas (over \mathcal{S}) is inductively defined as follows:

...

- If φ is a formula over \mathcal{S} , then so is its **negation** $\neg\varphi$.
- If φ and ψ are formulas over \mathcal{S} , then so are the **conjunction** $(\varphi \wedge \psi)$ and the **disjunction** $(\varphi \vee \psi)$.

German: Negation, Konjunktion, Disjunktion

Formulas: Examples

Examples: Arithmetic and Genealogy

- $\text{Positive}(x_2)$
- $\forall x (\neg \text{SquareNumber}(x) \vee \text{Positive}(x))$
- $\exists x_3 (\text{SquareNumber}(x_3) \wedge \neg \text{Positive}(x_3))$
- $\forall x (x = y)$
- $\forall x (\text{sum}(x, x) = \text{product}(x, \text{one}))$
- $\forall x \exists y (\text{sum}(x, y) = \text{zero})$
- $\forall x \exists y (\text{Parent}(y, x) \wedge \text{Female}(y))$

Terminology: The symbols \forall and \exists are called **quantifiers**.

German: Quantoren

Abbreviations and Placement of Parentheses by Convention

abbreviations:

- $(\varphi \rightarrow \psi)$ is an abbreviation for $(\neg \varphi \vee \psi)$.
- $(\varphi \leftrightarrow \psi)$ is an abbreviation for $((\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi))$.
- Sequences of the same quantifier can be abbreviated.

For example:

- $\forall x \forall y \forall z \varphi \rightsquigarrow \forall xyz \varphi$
- $\exists x \exists y \exists z \varphi \rightsquigarrow \exists xyz \varphi$
- $\forall w \exists x \exists y \forall z \varphi \rightsquigarrow \forall w \exists xy \forall z \varphi$

Abbreviations and Placement of Parentheses by Convention

abbreviations:

- $(\varphi \rightarrow \psi)$ is an abbreviation for $(\neg \varphi \vee \psi)$.
- $(\varphi \leftrightarrow \psi)$ is an abbreviation for $((\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi))$.
- Sequences of the same quantifier can be abbreviated.

For example:

- $\forall x \forall y \forall z \varphi \rightsquigarrow \forall xyz \varphi$
- $\exists x \exists y \exists z \varphi \rightsquigarrow \exists xyz \varphi$
- $\forall w \exists x \exists y \forall z \varphi \rightsquigarrow \forall w \exists xy \forall z \varphi$

placement of parentheses by convention:

- analogous to propositional logic
- quantifiers \forall and \exists bind more strongly than anything else.
- example: $\forall x P(x) \rightarrow Q(x)$ corresponds to $(\forall x P(x) \rightarrow Q(x))$,
not $\forall x (P(x) \rightarrow Q(x))$.

Questions

Summary

Summary

- **Predicate logic** is more expressive than propositional logic and allows statements over **objects** and their **properties**.
- Objects are described by **terms** that are built from variable, constant and function symbols.
- Properties and relations are described by **formulas** that are built from predicates, quantifiers and the usual logical operators.