

Theory of Computer Science

B3. Propositional Logic III

Gabriele Röger

University of Basel

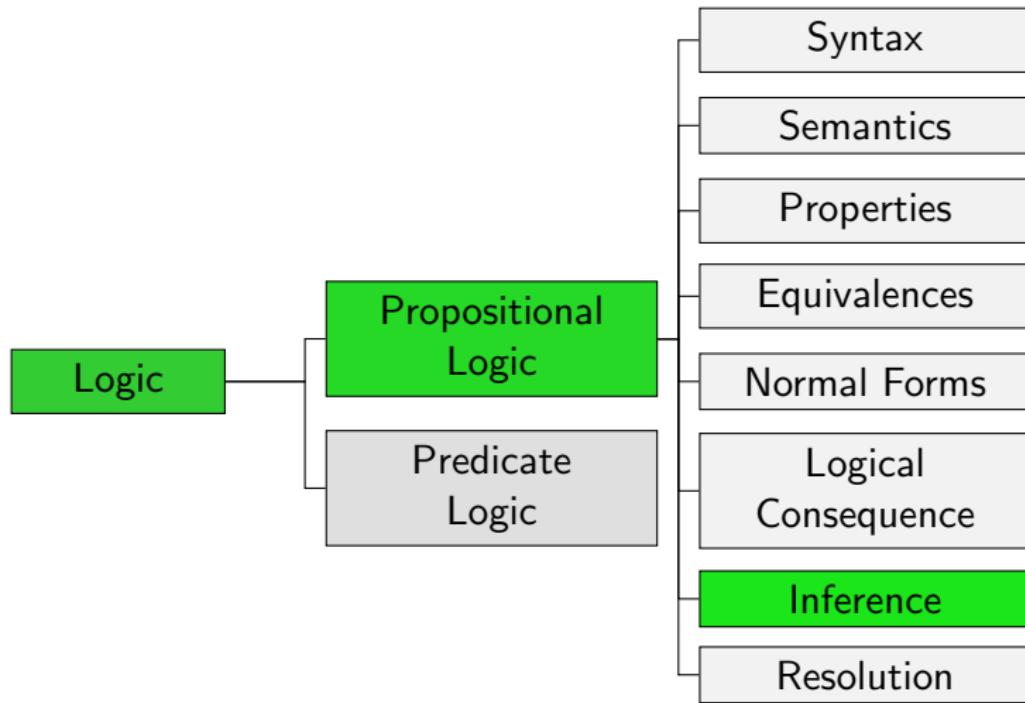
March 4, 2019

(Parts of) The Story So Far

- **knowledge base**: set of formulas describing given information; satisfiable, valid etc. used like for individual formulas
- **logical consequence** $KB \models \varphi$ means that φ is true whenever (= in all models where) KB is true

Inference

Logic: Overview



Inference: Motivation

- up to now: proof of logical consequence with semantic arguments

Inference: Motivation

- up to now: proof of **logical consequence** with **semantic arguments**
- no general algorithm

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments
- no general algorithm
- solution: produce with syntactic inference rules formulas that are logical consequences of given formulas.

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments
- no general algorithm
- solution: produce with syntactic inference rules formulas that are logical consequences of given formulas.
- advantage: mechanical method can easily be implemented as an algorithm

Inference Rules

- Inference rules have the form

$$\frac{\varphi_1, \dots, \varphi_k}{\psi}.$$

German: Inferenzregel

Inference Rules

- Inference rules have the form

$$\frac{\varphi_1, \dots, \varphi_k}{\psi}.$$

- Meaning: "Every model of $\varphi_1, \dots, \varphi_k$ is a model of ψ ."

German: Inferenzregel

Inference Rules

- Inference rules have the form

$$\frac{\varphi_1, \dots, \varphi_k}{\psi}.$$

- Meaning: "Every model of $\varphi_1, \dots, \varphi_k$ is a model of ψ ."
- An **axiom** is an inference rule with $k = 0$.

German: Inferenzregel, Axiom

Inference Rules

- Inference rules have the form

$$\frac{\varphi_1, \dots, \varphi_k}{\psi}.$$

- Meaning: “Every model of $\varphi_1, \dots, \varphi_k$ is a model of ψ .”
- An **axiom** is an inference rule with $k = 0$.
- A set of syntactic inference rules is called a **calculus** or **proof system**.

German: Inferenzregel, Axiom, Kalkül, Beweissystem

Some Inference Rules for Propositional Logic

Modus ponens

$$\frac{\varphi, (\varphi \rightarrow \psi)}{\psi}$$

Some Inference Rules for Propositional Logic

Modus ponens

$$\frac{\varphi, (\varphi \rightarrow \psi)}{\psi}$$

Modus tollens

$$\frac{\neg\psi, (\varphi \rightarrow \psi)}{\neg\varphi}$$

Some Inference Rules for Propositional Logic

Modus ponens

$$\frac{\varphi, (\varphi \rightarrow \psi)}{\psi}$$

Modus tollens

$$\frac{\neg\psi, (\varphi \rightarrow \psi)}{\neg\varphi}$$

\wedge -elimination

$$\frac{(\varphi \wedge \psi)}{\varphi} \quad \frac{(\varphi \wedge \psi)}{\psi}$$

Some Inference Rules for Propositional Logic

Modus ponens

$$\frac{\varphi, (\varphi \rightarrow \psi)}{\psi}$$

Modus tollens

$$\frac{\neg\psi, (\varphi \rightarrow \psi)}{\neg\varphi}$$

\wedge -elimination

$$\frac{(\varphi \wedge \psi)}{\varphi} \quad \frac{(\varphi \wedge \psi)}{\psi}$$

\wedge -introduction

$$\frac{\varphi, \psi}{(\varphi \wedge \psi)}$$

Some Inference Rules for Propositional Logic

Modus ponens

$$\frac{\varphi, (\varphi \rightarrow \psi)}{\psi}$$

Modus tollens

$$\frac{\neg\psi, (\varphi \rightarrow \psi)}{\neg\varphi}$$

\wedge -elimination

$$\frac{(\varphi \wedge \psi)}{\varphi} \quad \frac{(\varphi \wedge \psi)}{\psi}$$

\wedge -introduction

$$\frac{\varphi, \psi}{(\varphi \wedge \psi)}$$

\vee -introduction

$$\frac{\varphi}{(\varphi \vee \psi)}$$

Some Inference Rules for Propositional Logic

Modus ponens

$$\frac{\varphi, (\varphi \rightarrow \psi)}{\psi}$$

Modus tollens

$$\frac{\neg\psi, (\varphi \rightarrow \psi)}{\neg\varphi}$$

\wedge -elimination

$$\frac{(\varphi \wedge \psi)}{\varphi} \quad \frac{(\varphi \wedge \psi)}{\psi}$$

\wedge -introduction

$$\frac{\varphi, \psi}{(\varphi \wedge \psi)}$$

\vee -introduction

$$\frac{\varphi}{(\varphi \vee \psi)}$$

\leftrightarrow -elimination

$$\frac{(\varphi \leftrightarrow \psi)}{(\varphi \rightarrow \psi)} \quad \frac{(\varphi \leftrightarrow \psi)}{(\psi \rightarrow \varphi)}$$

Derivation

Definition (Derivation)

A **derivation** or **proof** of a formula φ from a knowledge base KB is a sequence of formulas ψ_1, \dots, ψ_k with

- $\psi_k = \varphi$ and
- for all $i \in \{1, \dots, k\}$:
 - $\psi_i \in \text{KB}$, or
 - ψ_i is the result of the application of an inference rule to elements from $\{\psi_1, \dots, \psi_{i-1}\}$.

German: Ableitung, Beweis

Derivation: Example

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \wedge R) \rightarrow S)\}$

Task: Find derivation of $(S \wedge R)$ from KB.

Derivation: Example

Example

Given: $\text{KB} = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \wedge R) \rightarrow S)\}$

Task: Find derivation of $(S \wedge R)$ from KB.

① P (KB)

Derivation: Example

Example

Given: $\text{KB} = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \wedge R) \rightarrow S)\}$

Task: Find derivation of $(S \wedge R)$ from KB.

- ① P (KB)
- ② $(P \rightarrow Q)$ (KB)

Derivation: Example

Example

Given: $\text{KB} = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \wedge R) \rightarrow S)\}$

Task: Find derivation of $(S \wedge R)$ from KB.

- ① P (KB)
- ② $(P \rightarrow Q)$ (KB)
- ③ Q (1, 2, Modus ponens)

Derivation: Example

Example

Given: $\text{KB} = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \wedge R) \rightarrow S)\}$

Task: Find derivation of $(S \wedge R)$ from KB.

- ① P (KB)
- ② $(P \rightarrow Q)$ (KB)
- ③ Q (1, 2, Modus ponens)
- ④ $(P \rightarrow R)$ (KB)

Derivation: Example

Example

Given: $\text{KB} = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \wedge R) \rightarrow S)\}$

Task: Find derivation of $(S \wedge R)$ from KB.

- ① P (KB)
- ② $(P \rightarrow Q)$ (KB)
- ③ Q (1, 2, Modus ponens)
- ④ $(P \rightarrow R)$ (KB)
- ⑤ R (1, 4, Modus ponens)

Derivation: Example

Example

Given: $\text{KB} = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \wedge R) \rightarrow S)\}$

Task: Find derivation of $(S \wedge R)$ from KB.

- ① P (KB)
- ② $(P \rightarrow Q)$ (KB)
- ③ Q (1, 2, Modus ponens)
- ④ $(P \rightarrow R)$ (KB)
- ⑤ R (1, 4, Modus ponens)
- ⑥ $(Q \wedge R)$ (3, 5, \wedge -introduction)

Derivation: Example

Example

Given: $\text{KB} = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \wedge R) \rightarrow S)\}$

Task: Find derivation of $(S \wedge R)$ from KB.

- ① P (KB)
- ② $(P \rightarrow Q)$ (KB)
- ③ Q (1, 2, Modus ponens)
- ④ $(P \rightarrow R)$ (KB)
- ⑤ R (1, 4, Modus ponens)
- ⑥ $(Q \wedge R)$ (3, 5, \wedge -introduction)
- ⑦ $((Q \wedge R) \rightarrow S)$ (KB)

Derivation: Example

Example

Given: $\text{KB} = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \wedge R) \rightarrow S)\}$

Task: Find derivation of $(S \wedge R)$ from KB.

- ① P (KB)
- ② $(P \rightarrow Q)$ (KB)
- ③ Q (1, 2, Modus ponens)
- ④ $(P \rightarrow R)$ (KB)
- ⑤ R (1, 4, Modus ponens)
- ⑥ $(Q \wedge R)$ (3, 5, \wedge -introduction)
- ⑦ $((Q \wedge R) \rightarrow S)$ (KB)
- ⑧ S (6, 7, Modus ponens)

Derivation: Example

Example

Given: $\text{KB} = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \wedge R) \rightarrow S)\}$

Task: Find derivation of $(S \wedge R)$ from KB.

- ① P (KB)
- ② $(P \rightarrow Q)$ (KB)
- ③ Q (1, 2, Modus ponens)
- ④ $(P \rightarrow R)$ (KB)
- ⑤ R (1, 4, Modus ponens)
- ⑥ $(Q \wedge R)$ (3, 5, \wedge -introduction)
- ⑦ $((Q \wedge R) \rightarrow S)$ (KB)
- ⑧ S (6, 7, Modus ponens)
- ⑨ $(S \wedge R)$ (8, 5, \wedge -introduction)

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)

We write $\text{KB} \vdash_C \varphi$ if there is a derivation of φ from KB in calculus C .

(If calculus C is clear from context, also only $\text{KB} \vdash \varphi$.)

A calculus C is **correct** if for all KB and φ
 $\text{KB} \vdash_C \varphi$ implies $\text{KB} \models \varphi$.

A calculus C is **complete** if for all KB and φ
 $\text{KB} \models \varphi$ implies $\text{KB} \vdash_C \varphi$.

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)

We write $\text{KB} \vdash_C \varphi$ if there is a derivation of φ from KB in calculus C .

(If calculus C is clear from context, also only $\text{KB} \vdash \varphi$.)

A calculus C is **correct** if for all KB and φ
 $\text{KB} \vdash_C \varphi$ implies $\text{KB} \models \varphi$.

A calculus C is **complete** if for all KB and φ
 $\text{KB} \models \varphi$ implies $\text{KB} \vdash_C \varphi$.

Consider calculus C , consisting of the derivation rules seen earlier.

Question: Is C correct?

Question: Is C complete?

German: korrekt, vollständig

Refutation-completeness

- We obviously want **correct** calculi.
- Do we always need a **complete** calculus?

Refutation-completeness

- We obviously want **correct** calculi.
- Do we always need a **complete** calculus?
- **Contradiction theorem:**
 $KB \cup \{\varphi\}$ is unsatisfiable iff $KB \models \neg\varphi$
- This implies that $KB \models \varphi$ iff $KB \cup \{\neg\varphi\}$ is unsatisfiable.
- We can reduce the **general** implication problem
to a **test of unsatisfiability**.

Refutation-completeness

- We obviously want **correct** calculi.
- Do we always need a **complete** calculus?
- **Contradiction theorem:**
 $KB \cup \{\varphi\}$ is unsatisfiable iff $KB \models \neg\varphi$
- This implies that $KB \models \varphi$ iff $KB \cup \{\neg\varphi\}$ is unsatisfiable.
- We can reduce the **general** implication problem to a **test of unsatisfiability**.
- In calculi, we use the special symbol \Box for (provably) unsatisfiable formulas.

Refutation-completeness

- We obviously want **correct** calculi.
- Do we always need a **complete** calculus?
- **Contradiction theorem:**
 $KB \cup \{\varphi\}$ is unsatisfiable iff $KB \models \neg\varphi$
- This implies that $KB \models \varphi$ iff $KB \cup \{\neg\varphi\}$ is unsatisfiable.
- We can reduce the **general** implication problem to a **test of unsatisfiability**.
- In calculi, we use the special symbol \Box for (provably) unsatisfiable formulas.

Definition (Refutation-Completeness)

A calculus C is **refutation-complete** if it holds for all unsatisfiable KB that $KB \vdash_C \Box$.

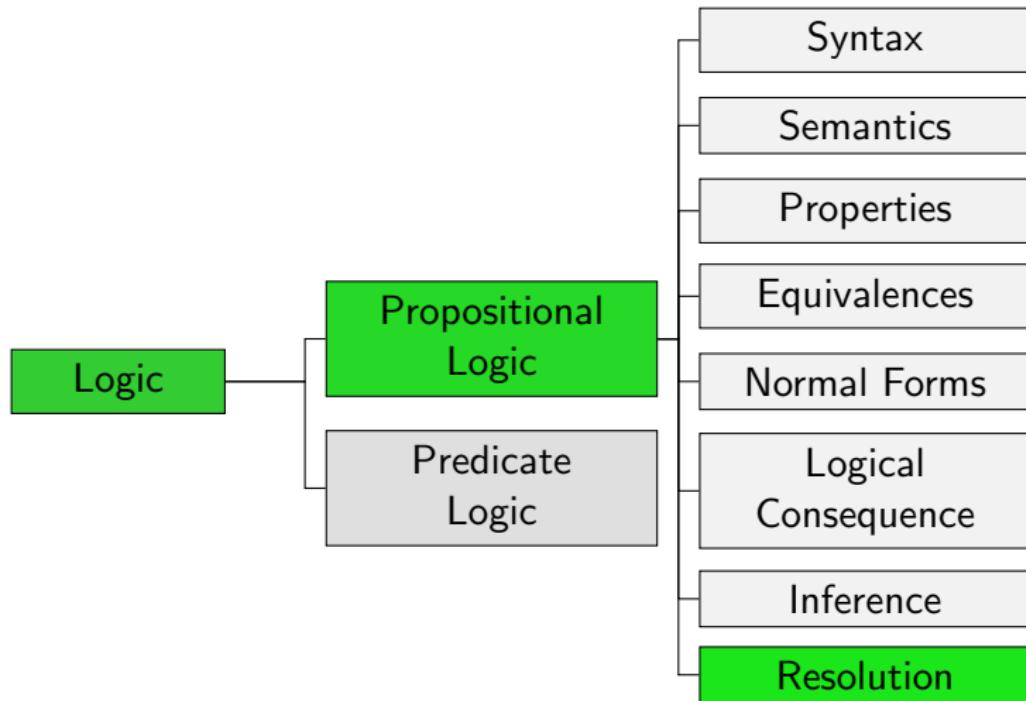
German: widerlegungsvollständig

Questions



Resolution Calculus

Logic: Overview



Resolution: Idea

- **Resolution** is a refutation-complete calculus for knowledge bases in **conjunctive normal form**.

Resolution: Idea

- Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.
- Every knowledge base can be transformed into equivalent formulas in CNF.
 - Transformation can require exponential time.
 - Alternative: efficient transformation in **equisatisfiable** formulas (not part of this course)

Resolution: Idea

- Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.
- Every knowledge base can be transformed into equivalent formulas in CNF.
 - Transformation can require exponential time.
 - Alternative: efficient transformation in **equisatisfiable** formulas (not part of this course)
- Show $\text{KB} \models \varphi$ by derivability of $\text{KB} \cup \{\neg\varphi\} \vdash_R \square$ with **resolution calculus R** .

Resolution: Idea

- Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.
- Every knowledge base can be transformed into equivalent formulas in CNF.
 - Transformation can require exponential time.
 - Alternative: efficient transformation in **equisatisfiable** formulas (not part of this course)
- Show $\text{KB} \models \varphi$ by derivability of $\text{KB} \cup \{\neg\varphi\} \vdash_R \square$ with **resolution calculus R** .
- Resolution can require exponential time.
- This is probably the case for **all** refutation-complete proof methods. \rightsquigarrow complexity theory

German: Resolution, erfüllbarkeitsäquivalent

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- Formula in CNF as **set of clauses**
(due to commutativity, idempotence, associativity of \wedge)
- Set of formulas as **set of clauses**
- Clause as **set of literals**
(due to commutativity, idempotence, associativity of \vee)
- Knowledge base as **set of sets of literals**

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- Formula in CNF as **set of clauses**
(due to commutativity, idempotence, associativity of \wedge)
- Set of formulas as **set of clauses**
- Clause as **set of literals**
(due to commutativity, idempotence, associativity of \vee)
- Knowledge base as **set of sets of literals**

Example

$$KB = \{(P \vee P), ((\neg P \vee Q) \wedge (\neg P \vee R) \wedge (\neg P \vee Q) \wedge R), ((\neg Q \vee \neg R \vee S) \wedge P)\}$$

as set of clauses:

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- Formula in CNF as **set of clauses**
(due to commutativity, idempotence, associativity of \wedge)
- Set of formulas as **set of clauses**
- Clause as **set of literals**
(due to commutativity, idempotence, associativity of \vee)
- Knowledge base as **set of sets of literals**

Example

$$KB = \{(P \vee P), ((\neg P \vee Q) \wedge (\neg P \vee R) \wedge (\neg P \vee Q) \wedge R), ((\neg Q \vee \neg R \vee S) \wedge P)\}$$

as set of clauses:

$$\Delta = \{\{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{R\}, \{\neg Q, \neg R, S\}\}$$

Resolution Rule

The **resolution calculus** consists of a single rule, called **resolution rule**:

$$\frac{C_1 \cup \{L\}, C_2 \cup \{\neg L\}}{C_1 \cup C_2},$$

where C_1 und C_2 are (possibly empty) clauses and L is an atomic proposition.

Resolution Rule

The **resolution calculus** consists of a single rule, called **resolution rule**:

$$\frac{C_1 \cup \{L\}, C_2 \cup \{\neg L\}}{C_1 \cup C_2},$$

where C_1 und C_2 are (possibly empty) clauses and L is an atomic proposition.

If we derive the empty clause, we write \square instead of $\{\}$.

Resolution Rule

The **resolution calculus** consists of a single rule, called **resolution rule**:

$$\frac{C_1 \cup \{L\}, C_2 \cup \{\neg L\}}{C_1 \cup C_2},$$

where C_1 und C_2 are (possibly empty) clauses and L is an atomic proposition.

If we derive the empty clause, we write \square instead of $\{\}$.

Terminology:

- L and $\neg L$ are the **resolution literals**,
- $C_1 \cup \{L\}$ and $C_2 \cup \{\neg L\}$ are the **parent clauses**, and
- $C_1 \cup C_2$ is the **resolvent**.

German: Resolutionskalkül, Resolutionsregel, Resolutionsliterale, Elternklauseln, Resolvent

Proof by Resolution

Definition (Proof by Resolution)

A **proof by resolution** of a clause D from a knowledge base Δ is a sequence of clauses C_1, \dots, C_n with

- $C_n = D$ and
- for all $i \in \{1, \dots, n\}$:
 - $C_i \in \Delta$, or
 - C_i is resolvent of two clauses from $\{C_1, \dots, C_{i-1}\}$.

If there is a proof of D by resolution from Δ , we say that D can be **derived with resolution** from Δ and write $\Delta \vdash_R D$.

Remark: Resolution is a **correct, refutation-complete**, but **incomplete** calculus.

German: Resolutionsbeweis, “mit Resolution aus Δ abgeleitet”

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example

Given: $KB = \{P, (P \rightarrow (Q \wedge R))\}$.

Show with resolution that $KB \models (R \vee S)$.

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example

Given: $KB = \{P, (P \rightarrow (Q \wedge R))\}$.

Show with resolution that $KB \models (R \vee S)$.

Three steps:

- ① Reduce logical consequence to unsatisfiability.
- ② Transform knowledge base into clause form (CNF).
- ③ Derive empty clause \square with resolution.

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example

Given: $KB = \{P, (P \rightarrow (Q \wedge R))\}$.

Show with resolution that $KB \models (R \vee S)$.

Three steps:

- ① Reduce logical consequence to unsatisfiability.
- ② Transform knowledge base into clause form (CNF).
- ③ Derive empty clause \square with resolution.

Step 1: Reduce logical consequence to unsatisfiability.

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example

Given: $KB = \{P, (P \rightarrow (Q \wedge R))\}$.

Show with resolution that $KB \models (R \vee S)$.

Three steps:

- ① Reduce logical consequence to unsatisfiability.
- ② Transform knowledge base into clause form (CNF).
- ③ Derive empty clause \square with resolution.

Step 1: Reduce logical consequence to unsatisfiability.

$KB \models (R \vee S)$ iff $KB \cup \{\neg(R \vee S)\}$ is unsatisfiable.

Thus, consider

$KB' = KB \cup \{\neg(R \vee S)\} = \{P, (P \rightarrow (Q \wedge R)), \neg(R \vee S)\}$.

...

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example

$$\text{KB}' = \{P, (P \rightarrow (Q \wedge R)), \neg(R \vee S)\}.$$

Step 2: Transform knowledge base into clause form (CNF).

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example

$$\text{KB}' = \{P, (P \rightarrow (Q \wedge R)), \neg(R \vee S)\}.$$

Step 2: Transform knowledge base into clause form (CNF).

- P
~~> **Clauses:** $\{P\}$
- $P \rightarrow (Q \wedge R) \equiv (\neg P \vee (Q \wedge R)) \equiv ((\neg P \vee Q) \wedge (\neg P \vee R))$
~~> **Clauses:** $\{\neg P, Q\}, \{\neg P, R\}$
- $\neg(R \vee S) \equiv (\neg R \wedge \neg S)$
~~> **Clauses:** $\{\neg R\}, \{\neg S\}$

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example

$$\text{KB}' = \{P, (P \rightarrow (Q \wedge R)), \neg(R \vee S)\}.$$

Step 2: Transform knowledge base into clause form (CNF).

- P
~~> **Clauses:** $\{P\}$
- $P \rightarrow (Q \wedge R) \equiv (\neg P \vee (Q \wedge R)) \equiv ((\neg P \vee Q) \wedge (\neg P \vee R))$
~~> **Clauses:** $\{\neg P, Q\}, \{\neg P, R\}$
- $\neg(R \vee S) \equiv (\neg R \wedge \neg S)$
~~> **Clauses:** $\{\neg R\}, \{\neg S\}$

$$\Delta = \{\{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{\neg R\}, \{\neg S\}\}$$

...

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example

$$\Delta = \{\{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{\neg R\}, \{\neg S\}\}$$

Step 3: Derive empty clause \square with resolution.

- $C_1 = \{P\}$ (from Δ)
- $C_2 = \{\neg P, Q\}$ (from Δ)
- $C_3 = \{\neg P, R\}$ (from Δ)
- $C_4 = \{\neg R\}$ (from Δ)
- $C_5 = \{Q\}$ (from C_1 und C_2)
- $C_6 = \{\neg P\}$ (from C_3 und C_4)
- $C_7 = \square$ (from C_1 und C_6)

Note: There are shorter proofs. (For example?)

Another Example

Another Example for Resolution

Show with resolution, that $\text{KB} \models \text{DrinkBeer}$, where

$$\begin{aligned}\text{KB} = \{ & (\neg \text{DrinkBeer} \rightarrow \text{EatFish}), \\ & ((\text{EatFish} \wedge \text{DrinkBeer}) \rightarrow \neg \text{EatIceCream}), \\ & ((\text{EatIceCream} \vee \neg \text{DrinkBeer}) \rightarrow \neg \text{EatFish}) \}.\end{aligned}$$

Questions

Summary

Summary

- A logical consequence $KB \models \varphi$ allows to conclude that KB implies φ based on the semantics.
- A correct calculus supports such conclusions on the basis of purely syntactical derivations $KB \vdash \varphi$.
- Complete calculi often not necessary: For many questions refutation-completeness is sufficient.
- The resolution calculus is correct and refutation-complete.

Further Topics

There are many aspects of propositional logic that we do not cover in this course.

- **resolution strategies** to make resolution as efficient as possible in practice,
- other proof systems, as for example **tableaux proofs**,
- algorithms for **model construction**, such as the Davis-Putnam-Logemann-Loveland (DPLL) algorithm.
→ Foundations of AI course