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Simplified Notation Normal Forms Logical Consequences Summary

The Story So Far

propositional logic based on atomic propositions

syntax: which formulas are well-formed?

semantics: when is a formula true?

interpretations: important basis of semantics

satisfiability and validity: important properties of formulas

truth tables: systematically consider all interpretations

equivalences: describe when formulas are
semantically indistinguishable
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Simplified Notation
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Parentheses

Associativity:

((ϕ ∧ ψ) ∧ χ) ≡ (ϕ ∧ (ψ ∧ χ))

((ϕ ∨ ψ) ∨ χ) ≡ (ϕ ∨ (ψ ∨ χ))

Placement of parentheses for a conjunction of conjunctions
does not influence whether an interpretation is a model.

ditto for disjunctions of disjunctions

→ can omit parentheses and treat this as if parentheses
placed arbitrarily

Example: (A1 ∧ A2 ∧ A3 ∧ A4) instead of
((A1 ∧ (A2 ∧ A3)) ∧ A4)

Example: (¬A ∨ (B ∧ C) ∨D) instead of ((¬A ∨ (B ∧ C)) ∨D)
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Parentheses

Does this mean we can always omit all parentheses
and assume an arbitrary placement? → No!

((ϕ ∧ ψ) ∨ χ) 6≡ (ϕ ∧ (ψ ∨ χ))

What should ϕ ∧ ψ ∨ χ mean?
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Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

¬ binds more strongly than ∧
∧ binds more strongly than ∨
∨ binds more strongly than → or ↔

→ cf. PEMDAS/“Punkt vor Strich”

Example

A ∨ ¬C ∧ B→ A ∨ ¬D stands for A ∨ ¬C ∧ B→ A ∨ ¬D

often harder to read

error-prone

→ not used in this course
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Short Notations for Conjunctions and Disjunctions

Short notation for addition:∑n

i=1
xi = x1 + x2 + · · ·+ xn

∑
x∈{x1,...,xn}

x = x1 + x2 + · · ·+ xn

Analogously (possible because of commutativity of ∧ and ∨):(∧n

i=1
ϕi

)
= (ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn)(∨n

i=1
ϕi

)
= (ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn)

(∧
ϕ∈X

ϕ
)

= (ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn)(∨
ϕ∈X

ϕ
)

= (ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn)

for X = {ϕ1, . . . , ϕn}
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Short Notation: Corner Cases

Is I |= ψ true for

ψ =
(∧

ϕ∈X
ϕ
)

and ψ =
(∨

ϕ∈X
ϕ
)

if X = ∅ or X = {χ}?

convention:(∧
ϕ∈∅ ϕ

)
is tautology.(∨

ϕ∈∅ ϕ
)

is unsatisfiable.(∧
ϕ∈{χ} ϕ

)
=
(∨

ϕ∈{χ} ϕ
)

= χ

 Why?
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Questions

Questions?
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Normal Forms
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Why Normal Forms?

A normal form is a representation
with certain syntactic restrictions.

condition for reasonable normal form: every formula
must have a logically equivalent formula in normal form

advantages:

can restrict proofs to formulas in normal form
can define algorithms only for formulas in normal form

German: Normalform
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Literals, Clauses and Monomials

A literal is an atomic proposition
or the negation of an atomic proposition (e. g., A and ¬A).

A clause is a disjunction of literals
(e. g., (Q ∨ ¬P ∨ ¬S ∨ R)).

A monomial is a conjunction of literals
(e. g., (Q ∧ ¬P ∧ ¬S ∧ R)).

The terms clause and monomial are also used for the corner case
with only one literal.

German: Literal, Klausel, Monom
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Terminology: Examples

Examples

(¬Q ∧ R)

is a monomial

(P ∨ ¬Q)

is a clause

((P ∨ ¬Q) ∧ P)

is neither literal nor clause nor monomial

¬P

is a literal, a clause and a monomial

(P→ Q)

is neither literal nor clause nor monomial
(but (¬P ∨ Q) is a clause!)

(P ∨ P)

is a clause, but not a literal or monomial

¬¬P

is neither literal nor clause nor monomial
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Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula is in conjunctive normal form (CNF)
if it is a conjunction of clauses, i. e., if it has the form n∧

i=1

 mi∨
j=1

Lij


with n,mi > 0 (for 1 ≤ i ≤ n), where the Lij are literals.

German: konjunktive Normalform (KNF)

Example

((¬P ∨ Q) ∧ R ∧ (P ∨ ¬S)) is in CNF.
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Disjunctive Normal Form

Definition (Disjunctive Normal Form)

A formula is in disjunctive normal form (DNF)
if it is a disjunction of monomials, i. e., if it has the form n∨

i=1

 mi∧
j=1

Lij


with n,mi > 0 (for 1 ≤ i ≤ n), where the Lij are literals.

German: disjunktive Normalform (DNF)

Example

((¬P ∧ Q) ∨ R ∨ (P ∧ ¬S)) is in DNF.
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CNF and DNF: Examples

Examples

((P ∨ ¬Q) ∧ P)

((R ∨ Q) ∧ P ∧ (R ∨ S))

(P ∨ (¬Q ∧ R))

((P ∨ ¬Q)→ P)

P
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CNF and DNF: Examples

Examples

((P ∨ ¬Q) ∧ P) is in CNF

((R ∨ Q) ∧ P ∧ (R ∨ S)) is in CNF

(P ∨ (¬Q ∧ R)) is in DNF

((P ∨ ¬Q)→ P) is neither in CNF nor in DNF

P is in CNF and in DNF



Simplified Notation Normal Forms Logical Consequences Summary

Construction of CNF (and DNF)

Algorithm to Construct CNF

1 Replace abbreviations → and ↔ by their definitions
((→)-elimination and (↔)-elimination).
 formula structure: only ∨, ∧, ¬

2 Move negations inside using De Morgan and double negation.
 formula structure: only ∨, ∧, literals

3 Distribute ∨ over ∧ with distributivity
(strictly speaking also with commutativity).
 formula structure: CNF

4 optionally: Simplify the formula at the end
or at intermediate steps (e. g., with idempotence).

Note: For DNF, distribute ∧ over ∨ instead.
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Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: ϕ = (((P ∧ ¬Q) ∨ R)→ (P ∨ ¬(S ∨ T)))

ϕ ≡ (¬((P ∧ ¬Q) ∨ R) ∨ P ∨ ¬(S ∨ T)) [Step 1]

≡ ((¬(P ∧ ¬Q) ∧ ¬R) ∨ P ∨ ¬(S ∨ T)) [Step 2]

≡ (((¬P ∨ ¬¬Q) ∧ ¬R) ∨ P ∨ ¬(S ∨ T)) [Step 2]

≡ (((¬P ∨ Q) ∧ ¬R) ∨ P ∨ ¬(S ∨ T)) [Step 2]

≡ (((¬P ∨ Q) ∧ ¬R) ∨ P ∨ (¬S ∧ ¬T)) [Step 2]

≡ ((¬P ∨ Q ∨ P ∨ (¬S ∧ ¬T)) ∧
(¬R ∨ P ∨ (¬S ∧ ¬T))) [Step 3]

≡ (¬R ∨ P ∨ (¬S ∧ ¬T)) [Step 4]

≡ ((¬R ∨ P ∨ ¬S) ∧ (¬R ∨ P ∨ ¬T)) [Step 3]
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Construct DNF: Example

Construction of Disjunctive Normal Form

Given: ϕ = (((P ∧ ¬Q) ∨ R)→ (P ∨ ¬(S ∨ T)))

ϕ ≡ (¬((P ∧ ¬Q) ∨ R) ∨ P ∨ ¬(S ∨ T)) [Step 1]

≡ ((¬(P ∧ ¬Q) ∧ ¬R) ∨ P ∨ ¬(S ∨ T)) [Step 2]

≡ (((¬P ∨ ¬¬Q) ∧ ¬R) ∨ P ∨ ¬(S ∨ T)) [Step 2]

≡ (((¬P ∨ Q) ∧ ¬R) ∨ P ∨ ¬(S ∨ T)) [Step 2]

≡ (((¬P ∨ Q) ∧ ¬R) ∨ P ∨ (¬S ∧ ¬T)) [Step 2]

≡ ((¬P ∧ ¬R) ∨ (Q ∧ ¬R) ∨ P ∨ (¬S ∧ ¬T)) [Step 3]
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Existence of an Equivalent Formula in Normal Form

Theorem

For every formula ϕ there is a logically equivalent formula in CNF
and a logically equivalent formula in DNF.

“There is a” always means “there is at least one”.
Otherwise we would write “there is exactly one”.

Intuition: algorithm to construct normal form works
with any given formula and only uses equivalence rewriting.

actual proof would use induction over structure of formula
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Size of Normal Forms

In the worst case, a logically equivalent formula in CNF or
DNF can be exponentially larger than the original formula.

Example: for (x1 ∨ y1) ∧ · · · ∧ (xn ∨ yn) there is no smaller
logically equivalent formula in DNF than:∨

S∈P({1,...,n})

(∧
i∈S xi ∧

∧
i∈{1,...,n}\S yi

)
As a consequence, the construction of the CNF/DNF formula
can take exponential time.
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More Theorems

Theorem

A formula in CNF is a tautology iff every clause is a tautology.

Theorem

A formula in DNF is satisfiable iff at least one of its monomials
is satisfiable.

 both proved easily with semantics of propositional logic
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Questions

Questions?
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Logical Consequences
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Logic: Overview

Logic

Propositional
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Syntax
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Properties
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Logic
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Knowledge Bases: Example

If not DrinkBeer, then EatFish.
If EatFish and DrinkBeer,
then not EatIceCream.
If EatIceCream or not DrinkBeer,
then not EatFish.

KB = {(¬DrinkBeer→ EatFish),

((EatFish ∧ DrinkBeer)→ ¬EatIceCream),

((EatIceCream ∨ ¬DrinkBeer)→ ¬EatFish)}
Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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Models for Sets of Formulas

Definition (Model for Knowledge Base)

Let KB be a knowledge base over A,
i. e., a set of propositional formulas over A.

A truth assignment I for A is a model for KB (written: I |= KB)
if I is a model for every formula ϕ ∈ KB.

German: Wissensbasis, Modell
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Properties of Sets of Formulas

A knowledge base KB is

satisfiable if KB has at least one model

unsatisfiable if KB is not satisfiable

valid (or a tautology) if every interpretation is a model for KB

falsifiable if KB is no tautology

German: erfüllbar, unerfüllbar, gültig, gültig/eine Tautologie,
falsifizierbar
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Example I

Which of the properties does KB = {(A ∧ ¬B),¬(B ∨ A)} have?

KB is unsatisfiable:
For every model I with I |= (A ∧ ¬B) we have I(A) = 1.
This means I |= (B ∨ A) and thus I 6|= ¬(B ∨ A).

This directly implies that KB is falsifiable, not satisfiable
and no tautology.
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Example I

Which of the properties does KB = {(A ∧ ¬B),¬(B ∨ A)} have?

KB is unsatisfiable:
For every model I with I |= (A ∧ ¬B) we have I(A) = 1.
This means I |= (B ∨ A) and thus I 6|= ¬(B ∨ A).

This directly implies that KB is falsifiable, not satisfiable
and no tautology.
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Example II

Which of the properties does

KB = {(¬DrinkBeer→ EatFish),

((EatFish ∧ DrinkBeer)→ ¬EatIceCream),

((EatIceCream ∨ ¬DrinkBeer)→ ¬EatFish)} have?

satisfiable, e. g. with
I = {EatFish 7→ 1,DrinkBeer 7→ 1,EatIceCream 7→ 0}
thus not unsatisfiable

falsifiable, e. g. with
I = {EatFish 7→ 0,DrinkBeer 7→ 0,EatIceCream 7→ 1}
thus not valid
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Example II

Which of the properties does

KB = {(¬DrinkBeer→ EatFish),

((EatFish ∧ DrinkBeer)→ ¬EatIceCream),

((EatIceCream ∨ ¬DrinkBeer)→ ¬EatFish)} have?

satisfiable, e. g. with
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thus not unsatisfiable
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I = {EatFish 7→ 0,DrinkBeer 7→ 0,EatIceCream 7→ 1}
thus not valid
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Logical Consequences: Motivation

What’s the secret of your long life?

I am on a strict diet: If I don’t drink beer
to a meal, then I always eat fish. When-
ever I have fish and beer with the same
meal, I abstain from ice cream. When I
eat ice cream or don’t drink beer, then I
never touch fish.

Claim: the woman drinks beer to every meal.

How can we prove this?

Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut/FreeDigitalPhotos.net
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Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and ϕ a formula.

We say that KB logically implies ϕ (written as KB |= ϕ)
if all models of KB are also models of ϕ.

also: KB logically entails ϕ, ϕ logically follows from KB,
ϕ is a logical consequence of KB

German: KB impliziert ϕ logisch, ϕ folgt logisch aus KB,
ϕ ist logische Konsequenz von KB

Attention: the symbol |= is “overloaded”: KB |= ϕ vs. I |= ϕ.

What if KB is unsatisfiable or the empty set?
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Logical Consequences: Example

Let ϕ = DrinkBeer and

KB = {(¬DrinkBeer→ EatFish),

((EatFish ∧ DrinkBeer)→ ¬EatIceCream),

((EatIceCream ∨ ¬DrinkBeer)→ ¬EatFish)}.

Show: KB |= ϕ

Proof sketch.

Proof by contradiction: assume I |= KB, but I 6|= DrinkBeer.
Then it follows that I |= ¬DrinkBeer.
Because I is a model of KB, we also have
I |= (¬DrinkBeer→ EatFish) and thus I |= EatFish. (Why?)
With an analogous argumentation starting from
I |= ((EatIceCream ∨ ¬DrinkBeer)→ ¬EatFish)
we get I |= ¬EatFish and thus I 6|= EatFish.  Contradiction!



Simplified Notation Normal Forms Logical Consequences Summary

Logical Consequences: Example

Let ϕ = DrinkBeer and

KB = {(¬DrinkBeer→ EatFish),

((EatFish ∧ DrinkBeer)→ ¬EatIceCream),

((EatIceCream ∨ ¬DrinkBeer)→ ¬EatFish)}.

Show: KB |= ϕ

Proof sketch.

Proof by contradiction: assume I |= KB, but I 6|= DrinkBeer.
Then it follows that I |= ¬DrinkBeer.
Because I is a model of KB, we also have
I |= (¬DrinkBeer→ EatFish) and thus I |= EatFish. (Why?)
With an analogous argumentation starting from
I |= ((EatIceCream ∨ ¬DrinkBeer)→ ¬EatFish)
we get I |= ¬EatFish and thus I 6|= EatFish.  Contradiction!



Simplified Notation Normal Forms Logical Consequences Summary

Important Theorems about Logical Consequences

Theorem (Deduction Theorem)

KB ∪ {ϕ} |= ψ iff KB |= (ϕ→ ψ)

German: Deduktionssatz

Theorem (Contraposition Theorem)

KB ∪ {ϕ} |= ¬ψ iff KB ∪ {ψ} |= ¬ϕ

German: Kontrapositionssatz

Theorem (Contradiction Theorem)

KB ∪ {ϕ} is unsatisfiable iff KB |= ¬ϕ

German: Widerlegungssatz

(without proof)



Simplified Notation Normal Forms Logical Consequences Summary

Questions

Questions?
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Summary

CNF: formula is a conjunction of clauses

DNF: formula is a disjunction of monomials

every formula has equivalent formulas in DNF and in CNF

knowledge base: set of formulas describing given information;
satisfiable, valid etc. used like for individual formulas

logical consequence KB |= ϕ means that ϕ is true
whenever (= in all models where) KB is true
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