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Jotation

The Story So Far

propositional logic based on atomic propositions

syntax: which formulas are well-formed?

semantics: when is a formula true?

interpretations: important basis of semantics

satisfiability and validity: important properties of formulas
truth tables: systematically consider all interpretations

equivalences: describe when formulas are
semantically indistinguishable
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Simplified Notation



Simplified Notation Normal Forms al Cons ces Summary
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Parentheses

Associativity:

m Placement of parentheses for a conjunction of conjunctions
does not influence whether an interpretation is a model.

m ditto for disjunctions of disjunctions

—» can omit parentheses and treat this as if parentheses
placed arbitrarily
m Example: (A1 A Az A A3 A Ag) instead of
((Al VAN (A2 VAN A3)) AN A4)
m Example: (-AV (BAC) VD) instead of ((-AV (BAC))VD)
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Parentheses

Does this mean we can always omit all parentheses
and assume an arbitrary placement? — No!
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Parentheses

Does this mean we can always omit all parentheses
and assume an arbitrary placement? — No!

((pAP)VX)Z (P A (Y VX))
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Parentheses

Does this mean we can always omit all parentheses
and assume an arbitrary placement? — No!

((pAP)VX)Z (P A (Y VX))

What should ¢ A ¢ V x mean?
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Placement of Parentheses by Convention
Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

m — binds more strongly than A
m A binds more strongly than Vv
m V binds more strongly than — or <

— cf. PEMDAS/ “Punkt vor Strich”

Summar
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Placement of Parentheses by Convention
Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

m — binds more strongly than A
m A binds more strongly than Vv
m V binds more strongly than — or <

— cf. PEMDAS/ “Punkt vor Strich”

AV-CAB— AV -D stands for AV -CAB — AV -D I
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Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

m — binds more strongly than A
m A binds more strongly than Vv
m V binds more strongly than — or <

— cf. PEMDAS/ “Punkt vor Strich”

AV -CAB — AV -D stands for AV (-CAB) - AV -D
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Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

m — binds more strongly than A
m A binds more strongly than Vv
m V binds more strongly than — or <

— cf. PEMDAS/ “Punkt vor Strich”

AV -CAB — AV -D stands for (AV (-CAB)) — (AV —D)
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Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

m — binds more strongly than A
m A binds more strongly than Vv
m V binds more strongly than — or <

— cf. PEMDAS/ “Punkt vor Strich”

AV -CAB — AV -D stands for (AV (-CAB)) = (AVv D))
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Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

m — binds more strongly than A
m A binds more strongly than Vv
m V binds more strongly than — or <

— cf. PEMDAS/ “Punkt vor Strich”

AV -CAB — AV -D stands for (AV (-CAB)) = (AVv D))

m often harder to read
m error-prone

— not used in this course



Short Notations for Conjunctions and Disjunctions

Short notation for addition:

n
Zizlx,-le-l—Xg-l—---—l—x,,
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Short Notations for Conjunctions and Disjunctions
Short notation for addition:

n
Do xi=x et x

Analogously:
(/\,r-,:l‘pi) =(p1 A2 A Apn)
(\/,r-,:l‘pi) =(p1 V2 V- Vin)
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Short Notations for Conjunctions and Disjunctions

Short notation for addition:

n
Zi_lxi:X1+X2+"‘+Xn

Z X=X1+X2+ -+ X
XE{X1,...,Xn}

Analogously:

(/\7:1s0i)=(901A902A--~As0n)
(\/,.n:lsOi):(solWOzv---vson)

Summar
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Short Notations for Conjunctions and Disjunctions
Short notation for addition:
S xi=xitet X

Z X=X1+Xo+" "+ Xp
XE{X1 ..., Xn }

Analogously (possible because of commutativity of A and V):

) =(prAp2 A+ Agn)
‘Pi):(Spl\/SDZ\/"‘\/SOn)

)=(L1 A2 A App)
¢) =(p1Vpa V- Vpn)
for X = {p1,...,0n}
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Short Notation: Corner Cases

Is Z = 4 true for

b= (P e 0= (V)

if X =0or X={x}7
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Short Notation: Corner Cases

Is Z = 4 true for

5= (A = (V9
if X =0or X={x}7

convention:
= (A,ep ) is tautology.
n (\/cpe(?) ¢) is unsatisfiable.

= (Avepg @) = (Veep 9) = x
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Short Notation: Corner Cases

Is Z = 4 true for

5= (A = (V9
if X =0or X={x}7

convention:

= (A,ep ) is tautology.
n (\/cpe(?) ¢) is unsatisfiable.

= (Avepg @) = (Veep 9) = x
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Questions
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Questions?
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Normal Forms
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Logic: Overview

~| Syntax

—I Semantics

|
|
~| Properties |
|

~| Equivalences

Predicate Logical
Logic Consequence
—I Inference |

—| Resolution |
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Why Normal Forms?

m A normal form is a representation
with certain syntactic restrictions.
m condition for reasonable normal form: every formula
must have a logically equivalent formula in normal form
m advantages:

m can restrict proofs to formulas in normal form
m can define algorithms only for formulas in normal form

German: Normalform



Normal Forms
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Literals, Clauses and Monomials

m A literal is an atomic proposition
or the negation of an atomic proposition (e.g., A and —A).



Normal Forms
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Literals, Clauses and Monomials

m A literal is an atomic proposition
or the negation of an atomic proposition (e.g., A and —A).

m A clause is a disjunction of literals
(e.g., (QV =PV =SVR)).
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Literals, Clauses and Monomials

m A literal is an atomic proposition

or the negation of an atomic proposition (e.g., A and —A).
m A clause is a disjunction of literals

(e.g., (QV—-PV-=SVR)).
m A monomial is a conjunction of literals

(e.g., (QA =P A=SAR)).
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Literals, Clauses and Monomials

m A literal is an atomic proposition

or the negation of an atomic proposition (e.g., A and —A).
m A clause is a disjunction of literals

(e.g., (QV—-PV-=SVR)).
m A monomial is a conjunction of literals

(e.g., (QA =P A=SAR)).

The terms clause and monomial are also used for the corner case
with only one literal.

Summar
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Literals, Clauses and Monomials

m A literal is an atomic proposition
or the negation of an atomic proposition (e.g., A and —A).

m A clause is a disjunction of literals
(e.g., (QV =PV =SVR)).

m A monomial is a conjunction of literals
(e.g., (QA =P A=SAR)).

The terms clause and monomial are also used for the corner case
with only one literal.

German: Literal, Klausel, Monom
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Terminology: Examples

[ | (—lQ/\R)

= (PV-Q)

m (PV-Q)AP)
m P

m (P—-Q)

m (PVP)

m P
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Terminology: Examples

m (-Q AR) is a monomial
m (PV-Q)

m (PV-Q)AP)

m P

m (P—-Q)

m (PVP)

m P
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Terminology: Examples

m (-Q AR) is a monomial
m (PV—Q)is a clause

= (PV-Q)AP)

m P

m (P—-Q)

m (PVP)

m P
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Terminology: Examples

m (-Q AR) is a monomial

m (PV—Q)is a clause

((P v =Q) A P) is neither literal nor clause nor monomial
-P

(P—Q)

(PVP)

m P
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Terminology: Examples

m (-Q AR) is a monomial

m (PV—Q)is a clause

m ((PV —Q) A P) is neither literal nor clause nor monomial

m —P is a literal, a clause and a monomial

m (P—-Q)

m (PVP)

m P )
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Terminology: Examples

m (-Q AR) is a monomial
m (PV—Q)is a clause

((P v =Q) A P) is neither literal nor clause nor monomial

=P is a literal, a clause and a monomial

(P — Q) is neither literal nor clause nor monomial
(but (=P Vv Q) is a clausel!)

(PVP)

m P
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Terminology: Examples

m (-Q AR) is a monomial
(P Vv —=Q) is a clause

((P v =Q) A P) is neither literal nor clause nor monomial

=P is a literal, a clause and a monomial

(P — Q) is neither literal nor clause nor monomial
(but (=P Vv Q) is a clausel!)

(P Vv P) is a clause, but not a literal or monomial

m P
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Terminology: Examples

(=Q AR) is a monomial
(PV—Q) is a clause

((P v =Q) A P) is neither literal nor clause nor monomial

=P is a literal, a clause and a monomial

(P — Q) is neither literal nor clause nor monomial
(but (=P Vv Q) is a clausel!)

(P Vv P) is a clause, but not a literal or monomial

——=P is neither literal nor clause nor monomial




Simplified Notation Normal Forms s Cone ces Summary

O00000e000000000

Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula is in conjunctive normal form (CNF)
if it is a conjunction of clauses, i.e., if it has the form

n mj
AV Li

i=1 \j=1

with n,m; > 0 (for 1 < i < n), where the Lj; are literals.

German: konjunktive Normalform (KNF)

(-PVQ)ARA(PV=S))isin CNF.
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Disjunctive Normal Form

Definition (Disjunctive Normal Form)

A formula is in disjunctive normal form (DNF)
if it is a disjunction of monomials, i.e., if it has the form

n mj
VI AL

i=1 \j=1

with n,m; > 0 (for 1 < i < n), where the Lj; are literals.

German: disjunktive Normalform (DNF)

(-PAQ)VRV(PA=S))isin DNF.
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CNF and DNF: Examples

m (PV-Q)AP)

B (RVQAPA(RVY))
m (PV(-QAR))

= (PV—-Q)—P)

m P




Normal Forms

0000000 e0000000

CNF and DNF: Examples

m ((PV—=Q)AP)isin CNF
B (RVQAPA(RVY))
m (PV(-QAR))

s (PV—-Q)—P)

m P
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CNF and DNF: Examples

m ((PV—=Q)AP)isin CNF

B (RVQ)APA(RVS))isin CNF
m (PV(-QAR))

m (PV-Q)—P)

m P
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CNF and DNF: Examples

m ((PV—=Q)AP)isin CNF

m (RVQ)APA(RVS))isin CNF
m (PV(-QAR))isin DNF

= (PV-Q)—P)

m P
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CNF and DNF: Examples

m ((PV—-Q)AP)isin CNF

s (RVQ)APA(RVS))isin CNF

s (PV (-QAR)) is in DNF

m ((PV —=Q) — P) is neither in CNF nor in DNF
m P
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CNF and DNF: Examples

m ((PV—-Q)AP)isin CNF

s (RVQ)APA(RVS))isin CNF

s (PV (-QAR)) is in DNF

m ((PV —=Q) — P) is neither in CNF nor in DNF
m Pisin CNF and in DNF
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Construction of CNF (and DNF)

Algorithm to Construct CNF

@ Replace abbreviations — and <> by their definitions
((—)-elimination and («+)-elimination).
~» formula structure: only V, A, =

@ Move negations inside using De Morgan and double negation.
~~ formula structure: only V, A, literals

© Distribute V over A with distributivity
(strictly speaking also with commutativity).
~> formula structure: CNF

@ optionally: Simplify the formula at the end
or at intermediate steps (e. g., with idempotence).

Note: For DNF, distribute A over V instead.
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Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))
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Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

e=(((PA-Q)VR)VPV~(SVT)) [Step 1]
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Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

e=(((PA-Q)VR)VPV~(SVT)) [Step 1]
=((~(PA=-QA-R)VPV~=(SVT)) [Step 2]
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Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

(=(PA-Q)VR)VPV=(SVT)) [Step 1]
(H(PA=-Q)A-R)VPV—(SVT)) [Step 2]
((F-PV--Q)A-R)VPV—=(SVT)) [Step 2]

¥
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Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

“(PA-Q)VR)VPV~—(SVT)) [Step 1]
(=(PA=-Q)A-R)VPV=(SVT)) [Step 2]
((=PV-=--Q)A=-R)VPV=(SVT)) [Step 2]
(FPVQ)A-R)VPV~=(SVT)) [Step 2]

¥

(
(
(
(




Normal Forms
000000000e00000

Constructlng CNF: Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

(PA-Q)VR)VPV—(SVT)) [Step 1]
(=(PA=Q)A—-R)VPV—=(SVT)) [Step 2]

p=(=
(
(=P V -=Q) A=R) VPV =(SVT)) [Step 2]
(
(

(FPVQ)A-R)VPV~(SVT))  [Step 2]
(FPVQ)A=R) VPV (=S A=T)) [Step 2]
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Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

(PA-Q)VR)VPV—(SVT)) [Step 1]
(~(PA=Q)A-R)VPV=(SVT)) [Step 2]
((=PV-=--Q)A=-R)VPV=(SVT)) [Step 2]

= (=
(
(
(-PVQ)A—-R)VPV—(SVT))  [Step 2]
(
(
(

(FPVQ)A-R)VPV (=SA-T)) [Step 2]
(-PVQVPV (=S A-T)) A
—RVP V(=S A-T))) [Step 3]




Normal Forms
000000000e00000

Constructlng CNF: Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

(PA-Q)VR)VPV—(SVT)) [Step 1]
(“(PA=Q)A-R)VPV=(SVT)) [Step 2]
(=PV=—"Q)A=R)VPV(SVT)) [Step 2]
(=PVQ)A-R)VPV=(SVT)) [Step 2]
((FPVQ)A-R)VPV(=SA-T)) [Step 2]
(-PVQVPV(=SA-T))A
—“RV PV (=SA-T))) [Step 3]
“RVPV(=SA-T)) [Step 4]

¥

(=
(
(
(
(
(
(
(
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Constructlng CNF: Example

Construction of Conjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

(PA-Q)VR)VPV—(SVT)) [Step 1]
(=(PA=-Q)A-R)VPV=(SVT)) [Step 2]
((=PV-=--Q)A=-R)VPV=(SVT)) [Step 2]
(FPVQ)A-R)VPV~=(SVT)) [Step 2]

= (=
(
(
(
((F-PVQ)A-R) VPV (-SA-T)) [Step 2]
(
(
(
(

(-PVQVPV(=SA-T))A

RV PV (=S A-T))) [Step 3]
“RVPV(=SA-T)) [Step 4]
(FRVPV-=S)A(=RVPV-T)) [Step 3]
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Construct DNF: Example

Construction of Disjunctive Normal Form

Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))
e=((PA-Q)VR)VPV=(SVT)) [Step 1]
=((~(PA-Q)A-R)VPV~=(SVT)) [Step 2]
=(((-PV-"Q)A-R)VPV—=(SVT)) [Step 2]
=(((-PVQ)A-R)VPV—(SVT)) [Step 2]
=(((-PVQ)A-R)VPV(=SA-T)) [Step 2]
=((-PA-R)V(QA-R)VPV(=SA-T)) [Step 3]
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Existence of an Equivalent Formula in Normal Form

For every formula o there is a logically equivalent formula in CNF
and a logically equivalent formula in DNF.
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Existence of an Equivalent Formula in Normal Form

For every formula o there is a logically equivalent formula in CNF
and a logically equivalent formula in DNF.

m “There is " always means “there is at least one”.
Otherwise we would write “there is exactly one”.
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Existence of an Equivalent Formula in Normal Form

For every formula o there is a logically equivalent formula in CNF
and a logically equivalent formula in DNF.

m “There is " always means “there is at least one”.
Otherwise we would write “there is exactly one”.

m Intuition: algorithm to construct normal form works
with any given formula and only uses equivalence rewriting.
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Existence of an Equivalent Formula in Normal Form

For every formula o there is a logically equivalent formula in CNF
and a logically equivalent formula in DNF.

m “There is " always means “there is at least one”.
Otherwise we would write “there is exactly one”.

m Intuition: algorithm to construct normal form works
with any given formula and only uses equivalence rewriting.

m actual proof would use induction over structure of formula
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Size of Normal Forms

m In the worst case, a logically equivalent formula in CNF or
DNF can be exponentially larger than the original formula.

m Example: for (x; V y1) A+ A (xn V yn) there is no smaller
logically equivalent formula in DNF than:
Vsera,..n) (/\ieS Xi A Niea,..np\s Yi)
m As a consequence, the construction of the CNF/DNF formula
can take exponential time.
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More Theorems

A formula in CNF is a tautology iff every clause is a tautology. l

A formula in DNF is satisfiable iff at least one of its monomials
is satisfiable.

~> both proved easily with semantics of propositional logic
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Questions

N
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Questions?
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Logical Consequences
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Logic: Overview

~| Syntax

—I Semantics

~| Equivalences

|
|
~| Properties |
|
—| Normal Forms |

Predicate
Logic

—I Inference |

—| Resolution |
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Knowledge Bases: Example

If not DrinkBeer, then EatFish.
If EatFish and DrinkBeer,

then not EatlceCream.

If EatlceCream or not DrinkBeer,
then not EatFish.

KB = {(—DrinkBeer — EatFish),
((EatFish A DrinkBeer) — —EatlceCream),
((EatlceCream Vv —DrinkBeer) — —EatFish)}

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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Models for Sets of Formulas

Definition (Model for Knowledge Base)

Summar

Let KB be a knowledge base over A,
i.e., a set of propositional formulas over A.

A truth assignment Z for A is a model for KB (written: Z |= KB)
if Z is a model for every formula ¢ € KB.

German: Wissensbasis, Modell
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Properties of Sets of Formulas

A knowledge base KB is
m satisfiable if KB has at least one model
m unsatisfiable if KB is not satisfiable
m valid (or a tautology) if every interpretation is a model for KB
m falsifiable if KB is no tautology

German: erfiillbar, unerfiillbar, giiltig, giiltig/eine Tautologie,
falsifizierbar
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Example |

Which of the properties does KB = {(A A =B),—(B V A)} have?
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Example |

Which of the properties does KB = {(A A =B),—(B V A)} have?

KB is unsatisfiable:

For every model Z with Z = (A A —=B) we have Z(A) = 1.
This means Z |= (B V A) and thus Z [~ (B Vv A).

Summar



Logical Consequences Summar
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Example |

Which of the properties does KB = {(A A =B),—(B V A)} have?

KB is unsatisfiable:
For every model Z with Z = (A A —=B) we have Z(A) = 1.
This means Z |= (B V A) and thus Z [~ (B Vv A).

This directly implies that KB is falsifiable, not satisfiable
and no tautology.
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Example I

Which of the properties does

KB = {(—DrinkBeer — EatFish),
((EatFish A DrinkBeer) — —EatlceCream),
((EatlceCream Vv —DrinkBeer) — —EatFish)} have?
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Example I

Which of the properties does

KB = {(—DrinkBeer — EatFish),
((EatFish A DrinkBeer) — —EatlceCream),
((EatlceCream V —DrinkBeer) — —EatFish)} have?

m satisfiable, e. g. with
T = {EatFish — 1, DrinkBeer — 1, EatlceCream — 0}

m thus not unsatisfiable

m falsifiable, e. g. with
7 = {EatFish — 0, DrinkBeer — 0, EatlceCream +— 1}

m thus not valid



Logical Consequences
000000080000

1 Notation

Logical Consequences: Motivation

What's the secret of your long life?

| am on a strict diet: If | don't drink beer
to a meal, then | always eat fish. When-
ever | have fish and beer with the same
meal, | abstain from ice cream. When |
eat ice cream or don't drink beer, then |
never touch fish.

Claim: the woman drinks beer to every meal.

How can we prove this?

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut/FreeDigitalPhotos.net
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Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and ¢ a formula.

We say that KB logically implies ¢ (written as KB = ¢)
if all models of KB are also models of .

also: KB logically entails ¢, ¢ logically follows from KB,
 is a logical consequence of KB

German: KB impliziert ¢ logisch, ¢ folgt logisch aus KB,
 ist logische Konsequenz von KB
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Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and ¢ a formula.

We say that KB logically implies ¢ (written as KB = ¢)
if all models of KB are also models of .

also: KB logically entails ¢, ¢ logically follows from KB,
 is a logical consequence of KB

German: KB impliziert ¢ logisch, ¢ folgt logisch aus KB,
 ist logische Konsequenz von KB

Attention: the symbol = is “overloaded”: KB = ¢ vs. 7 |= .
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Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and ¢ a formula.

We say that KB logically implies ¢ (written as KB = ¢)
if all models of KB are also models of .

also: KB logically entails ¢, ¢ logically follows from KB,
 is a logical consequence of KB

German: KB impliziert ¢ logisch, ¢ folgt logisch aus KB,
 ist logische Konsequenz von KB

Attention: the symbol = is “overloaded”: KB = ¢ vs. 7 |= .

What if KB is unsatisfiable or the empty set?
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Logical Consequences: Example

Let ¢ = DrinkBeer and

KB = {(—DrinkBeer — EatFish),
((EatFish A DrinkBeer) — —EatlceCream),

((EatlceCream Vv —DrinkBeer) — —EatFish)}.

Show: KB = ¢

Summar
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Logical Consequences: Example
Let ¢ = DrinkBeer and

KB = {(—DrinkBeer — EatFish),
((EatFish A DrinkBeer) — —EatlceCream),
((EatlceCream V —DrinkBeer) — —EatFish)}.

Show: KB = ¢

Proof sketch.

Proof by contradiction: assume Z |= KB, but Z [~ DrinkBeer.
Then it follows that Z = —DrinkBeer.

Because Z is a model of KB, we also have

7 = (—DrinkBeer — EatFish) and thus Z |= EatFish. (Why?)
With an analogous argumentation starting from

7 = ((EatlceCream V —DrinkBeer) — —EatFish)

we get 7 |= —EatFish and thus Z [~ EatFish. ~~ Contradiction!
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Important Theorems about Logical Consequences

Theorem (Deduction Theorem)

KBU{¢} E ¢ iffKB = (¢ — 9)

German: Deduktionssatz

Theorem (Contraposition Theorem)

KB U {p} =~ iff KBU {)} = —p

German: Kontrapositionssatz

Theorem (Contradiction Theorem)

KB U {¢} is unsatisfiable iff KB |= -

German: Widerlegungssatz

(without proof)
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Questions
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Questions?
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Summary
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Summary
m CNF: formula is a conjunction of clauses
m DNF: formula is a disjunction of monomials
m every formula has equivalent formulas in DNF and in CNF
m knowledge base: set of formulas describing given information;

satisfiable, valid etc. used like for individual formulas

m logical consequence KB |= ¢ means that ¢ is true
whenever (= in all models where) KB is true
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