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B2. Propositional Logic II Simplified Notation

Parentheses

Associativity:

((ϕ ∧ ψ) ∧ χ) ≡ (ϕ ∧ (ψ ∧ χ))

((ϕ ∨ ψ) ∨ χ) ≡ (ϕ ∨ (ψ ∨ χ))

I Placement of parentheses for a conjunction of conjunctions
does not influence whether an interpretation is a model.

I ditto for disjunctions of disjunctions

→ can omit parentheses and treat this as if parentheses
placed arbitrarily

I Example: (A1 ∧ A2 ∧ A3 ∧ A4) instead of
((A1 ∧ (A2 ∧ A3)) ∧ A4)

I Example: (¬A ∨ (B ∧ C) ∨D) instead of ((¬A ∨ (B ∧ C)) ∨D)
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B2. Propositional Logic II Simplified Notation

Parentheses

Does this mean we can always omit all parentheses
and assume an arbitrary placement? → No!

((ϕ ∧ ψ) ∨ χ) 6≡ (ϕ ∧ (ψ ∨ χ))

What should ϕ ∧ ψ ∨ χ mean?
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B2. Propositional Logic II Simplified Notation

Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

I ¬ binds more strongly than ∧
I ∧ binds more strongly than ∨
I ∨ binds more strongly than → or ↔

→ cf. PEMDAS/“Punkt vor Strich”

Example

A ∨ ¬C ∧ B→ A ∨ ¬D stands for ((A ∨ (¬C ∧ B))→ (A ∨ ¬D))

I often harder to read

I error-prone

→ not used in this course

Gabriele Röger (University of Basel) Theory of Computer Science February 27, 2019 6 / 35



B2. Propositional Logic II Simplified Notation

Short Notations for Conjunctions and Disjunctions

Short notation for addition:∑n

i=1
xi = x1 + x2 + · · ·+ xn∑

x∈{x1,...,xn}
x = x1 + x2 + · · ·+ xn

Analogously: (∧n

i=1
ϕi

)
= (ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn)(∨n

i=1
ϕi

)
= (ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn)(∧

ϕ∈X
ϕ
)

= (ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn)(∨
ϕ∈X

ϕ
)

= (ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn)

for X = {ϕ1, . . . , ϕn}
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B2. Propositional Logic II Simplified Notation

Short Notation: Corner Cases

Is I |= ψ true for

ψ =
(∧

ϕ∈X
ϕ
)

and ψ =
(∨

ϕ∈X
ϕ
)

if X = ∅ or X = {χ}?

convention:

I
(∧

ϕ∈∅ ϕ
)

is tautology.

I
(∨

ϕ∈∅ ϕ
)

is unsatisfiable.

I
(∧

ϕ∈{χ} ϕ
)

=
(∨

ϕ∈{χ} ϕ
)

= χ

 Why?
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B2.2 Normal Forms
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B2. Propositional Logic II Normal Forms

Logic: Overview
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B2. Propositional Logic II Normal Forms

Why Normal Forms?

I A normal form is a representation
with certain syntactic restrictions.

I condition for reasonable normal form: every formula
must have a logically equivalent formula in normal form

I advantages:
I can restrict proofs to formulas in normal form
I can define algorithms only for formulas in normal form

German: Normalform
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B2. Propositional Logic II Normal Forms

Literals, Clauses and Monomials

I A literal is an atomic proposition
or the negation of an atomic proposition (e. g., A and ¬A).

I A clause is a disjunction of literals
(e. g., (Q ∨ ¬P ∨ ¬S ∨ R)).

I A monomial is a conjunction of literals
(e. g., (Q ∧ ¬P ∧ ¬S ∧ R)).

The terms clause and monomial are also used for the corner case
with only one literal.

German: Literal, Klausel, Monom
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B2. Propositional Logic II Normal Forms

Terminology: Examples

Examples
I (¬Q ∧ R) is a monomial

I (P ∨ ¬Q) is a clause

I ((P ∨ ¬Q) ∧ P) is neither literal nor clause nor monomial

I ¬P is a literal, a clause and a monomial

I (P→ Q) is neither literal nor clause nor monomial
(but (¬P ∨ Q) is a clause!)

I (P ∨ P) is a clause, but not a literal or monomial

I ¬¬P is neither literal nor clause nor monomial

Gabriele Röger (University of Basel) Theory of Computer Science February 27, 2019 13 / 35



B2. Propositional Logic II Normal Forms

Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula is in conjunctive normal form (CNF)
if it is a conjunction of clauses, i. e., if it has the form n∧

i=1

 mi∨
j=1

Lij


with n,mi > 0 (for 1 ≤ i ≤ n), where the Lij are literals.

German: konjunktive Normalform (KNF)

Example

((¬P ∨ Q) ∧ R ∧ (P ∨ ¬S)) is in CNF.
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B2. Propositional Logic II Normal Forms

Disjunctive Normal Form

Definition (Disjunctive Normal Form)

A formula is in disjunctive normal form (DNF)
if it is a disjunction of monomials, i. e., if it has the form n∨

i=1

 mi∧
j=1

Lij


with n,mi > 0 (for 1 ≤ i ≤ n), where the Lij are literals.

German: disjunktive Normalform (DNF)

Example

((¬P ∧ Q) ∨ R ∨ (P ∧ ¬S)) is in DNF.
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B2. Propositional Logic II Normal Forms

CNF and DNF: Examples

Examples
I ((P ∨ ¬Q) ∧ P) is in CNF

I ((R ∨ Q) ∧ P ∧ (R ∨ S)) is in CNF

I (P ∨ (¬Q ∧ R)) is in DNF

I ((P ∨ ¬Q)→ P) is neither in CNF nor in DNF

I P is in CNF and in DNF
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B2. Propositional Logic II Normal Forms

Construction of CNF (and DNF)

Algorithm to Construct CNF
1 Replace abbreviations → and ↔ by their definitions

((→)-elimination and (↔)-elimination).
 formula structure: only ∨, ∧, ¬

2 Move negations inside using De Morgan and double negation.
 formula structure: only ∨, ∧, literals

3 Distribute ∨ over ∧ with distributivity
(strictly speaking also with commutativity).
 formula structure: CNF

4 optionally: Simplify the formula at the end
or at intermediate steps (e. g., with idempotence).

Note: For DNF, distribute ∧ over ∨ instead.
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B2. Propositional Logic II Normal Forms

Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: ϕ = (((P ∧ ¬Q) ∨ R)→ (P ∨ ¬(S ∨ T)))

ϕ ≡ (¬((P ∧ ¬Q) ∨ R) ∨ P ∨ ¬(S ∨ T)) [Step 1]

≡ ((¬(P ∧ ¬Q) ∧ ¬R) ∨ P ∨ ¬(S ∨ T)) [Step 2]

≡ (((¬P ∨ ¬¬Q) ∧ ¬R) ∨ P ∨ ¬(S ∨ T)) [Step 2]

≡ (((¬P ∨ Q) ∧ ¬R) ∨ P ∨ ¬(S ∨ T)) [Step 2]

≡ (((¬P ∨ Q) ∧ ¬R) ∨ P ∨ (¬S ∧ ¬T)) [Step 2]

≡ ((¬P ∨ Q ∨ P ∨ (¬S ∧ ¬T)) ∧
(¬R ∨ P ∨ (¬S ∧ ¬T))) [Step 3]

≡ (¬R ∨ P ∨ (¬S ∧ ¬T)) [Step 4]

≡ ((¬R ∨ P ∨ ¬S) ∧ (¬R ∨ P ∨ ¬T)) [Step 3]
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B2. Propositional Logic II Normal Forms

Construct DNF: Example

Construction of Disjunctive Normal Form

Given: ϕ = (((P ∧ ¬Q) ∨ R)→ (P ∨ ¬(S ∨ T)))

ϕ ≡ (¬((P ∧ ¬Q) ∨ R) ∨ P ∨ ¬(S ∨ T)) [Step 1]

≡ ((¬(P ∧ ¬Q) ∧ ¬R) ∨ P ∨ ¬(S ∨ T)) [Step 2]

≡ (((¬P ∨ ¬¬Q) ∧ ¬R) ∨ P ∨ ¬(S ∨ T)) [Step 2]

≡ (((¬P ∨ Q) ∧ ¬R) ∨ P ∨ ¬(S ∨ T)) [Step 2]

≡ (((¬P ∨ Q) ∧ ¬R) ∨ P ∨ (¬S ∧ ¬T)) [Step 2]

≡ ((¬P ∧ ¬R) ∨ (Q ∧ ¬R) ∨ P ∨ (¬S ∧ ¬T)) [Step 3]
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B2. Propositional Logic II Normal Forms

Existence of an Equivalent Formula in Normal Form

Theorem
For every formula ϕ there is a logically equivalent formula in CNF
and a logically equivalent formula in DNF.

I “There is a” always means “there is at least one”.
Otherwise we would write “there is exactly one”.

I Intuition: algorithm to construct normal form works
with any given formula and only uses equivalence rewriting.

I actual proof would use induction over structure of formula
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B2. Propositional Logic II Normal Forms

Size of Normal Forms

I In the worst case, a logically equivalent formula in CNF or
DNF can be exponentially larger than the original formula.

I Example: for (x1 ∨ y1) ∧ · · · ∧ (xn ∨ yn) there is no smaller
logically equivalent formula in DNF than:∨

S∈P({1,...,n})

(∧
i∈S xi ∧

∧
i∈{1,...,n}\S yi

)
I As a consequence, the construction of the CNF/DNF formula

can take exponential time.
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B2. Propositional Logic II Normal Forms

More Theorems

Theorem
A formula in CNF is a tautology iff every clause is a tautology.

Theorem
A formula in DNF is satisfiable iff at least one of its monomials
is satisfiable.

 both proved easily with semantics of propositional logic
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B2. Propositional Logic II Logical Consequences

B2.3 Logical Consequences
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B2. Propositional Logic II Logical Consequences

Logic: Overview
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B2. Propositional Logic II Logical Consequences

Knowledge Bases: Example

If not DrinkBeer, then EatFish.
If EatFish and DrinkBeer,
then not EatIceCream.
If EatIceCream or not DrinkBeer,
then not EatFish.

KB = {(¬DrinkBeer→ EatFish),

((EatFish ∧ DrinkBeer)→ ¬EatIceCream),

((EatIceCream ∨ ¬DrinkBeer)→ ¬EatFish)}

Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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B2. Propositional Logic II Logical Consequences

Models for Sets of Formulas

Definition (Model for Knowledge Base)

Let KB be a knowledge base over A,
i. e., a set of propositional formulas over A.

A truth assignment I for A is a model for KB (written: I |= KB)
if I is a model for every formula ϕ ∈ KB.

German: Wissensbasis, Modell
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B2. Propositional Logic II Logical Consequences

Properties of Sets of Formulas

A knowledge base KB is

I satisfiable if KB has at least one model

I unsatisfiable if KB is not satisfiable

I valid (or a tautology) if every interpretation is a model for KB

I falsifiable if KB is no tautology

German: erfüllbar, unerfüllbar, gültig, gültig/eine Tautologie,
falsifizierbar
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B2. Propositional Logic II Logical Consequences

Example I

Which of the properties does KB = {(A ∧ ¬B),¬(B ∨ A)} have?

KB is unsatisfiable:
For every model I with I |= (A ∧ ¬B) we have I(A) = 1.
This means I |= (B ∨ A) and thus I 6|= ¬(B ∨ A).

This directly implies that KB is falsifiable, not satisfiable
and no tautology.
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B2. Propositional Logic II Logical Consequences

Example II

Which of the properties does

KB = {(¬DrinkBeer→ EatFish),

((EatFish ∧ DrinkBeer)→ ¬EatIceCream),

((EatIceCream ∨ ¬DrinkBeer)→ ¬EatFish)} have?

I satisfiable, e. g. with
I = {EatFish 7→ 1,DrinkBeer 7→ 1,EatIceCream 7→ 0}

I thus not unsatisfiable

I falsifiable, e. g. with
I = {EatFish 7→ 0,DrinkBeer 7→ 0,EatIceCream 7→ 1}

I thus not valid
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B2. Propositional Logic II Logical Consequences

Logical Consequences: Motivation

What’s the secret of your long life?

I am on a strict diet: If I don’t drink beer
to a meal, then I always eat fish. When-
ever I have fish and beer with the same
meal, I abstain from ice cream. When I
eat ice cream or don’t drink beer, then I
never touch fish.

Claim: the woman drinks beer to every meal.

How can we prove this?

Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut/FreeDigitalPhotos.net
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B2. Propositional Logic II Logical Consequences

Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and ϕ a formula.

We say that KB logically implies ϕ (written as KB |= ϕ)
if all models of KB are also models of ϕ.

also: KB logically entails ϕ, ϕ logically follows from KB,
ϕ is a logical consequence of KB

German: KB impliziert ϕ logisch, ϕ folgt logisch aus KB,
ϕ ist logische Konsequenz von KB

Attention: the symbol |= is “overloaded”: KB |= ϕ vs. I |= ϕ.

What if KB is unsatisfiable or the empty set?
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B2. Propositional Logic II Logical Consequences

Logical Consequences: Example

Let ϕ = DrinkBeer and

KB = {(¬DrinkBeer→ EatFish),

((EatFish ∧ DrinkBeer)→ ¬EatIceCream),

((EatIceCream ∨ ¬DrinkBeer)→ ¬EatFish)}.

Show: KB |= ϕ

Proof sketch.

Proof by contradiction: assume I |= KB, but I 6|= DrinkBeer.
Then it follows that I |= ¬DrinkBeer.
Because I is a model of KB, we also have
I |= (¬DrinkBeer→ EatFish) and thus I |= EatFish. (Why?)
With an analogous argumentation starting from
I |= ((EatIceCream ∨ ¬DrinkBeer)→ ¬EatFish)
we get I |= ¬EatFish and thus I 6|= EatFish.  Contradiction!
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B2. Propositional Logic II Logical Consequences

Important Theorems about Logical Consequences

Theorem (Deduction Theorem)

KB ∪ {ϕ} |= ψ iff KB |= (ϕ→ ψ)

German: Deduktionssatz

Theorem (Contraposition Theorem)

KB ∪ {ϕ} |= ¬ψ iff KB ∪ {ψ} |= ¬ϕ

German: Kontrapositionssatz

Theorem (Contradiction Theorem)

KB ∪ {ϕ} is unsatisfiable iff KB |= ¬ϕ

German: Widerlegungssatz

(without proof)
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B2. Propositional Logic II Summary

B2.4 Summary
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B2. Propositional Logic II Summary

Summary

I CNF: formula is a conjunction of clauses

I DNF: formula is a disjunction of monomials

I every formula has equivalent formulas in DNF and in CNF

I knowledge base: set of formulas describing given information;
satisfiable, valid etc. used like for individual formulas

I logical consequence KB |= ϕ means that ϕ is true
whenever (= in all models where) KB is true
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