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Why Logic?

formalizing mathematics

What is a true statement?
What is a valid proof?

basis of many tools in computer science

design of digital circuits
semantics of databases; query optimization
meaning of programming languages
verification of safety-critical hardware/software
knowledge representation in artificial intelligence
logic-based programming languages (e.g. Prolog)
. . .
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Application: Logic Programming I

Declarative approach: Describe what to accomplish
Declarative approach: not how to accomplish it.

Example (Map Coloring)

Color each region in a map with a limited number of colors
so that no two adjacent regions have the same color.

CC BY-SA 3.0 Wikimedia Commons (TUBS)

This is a hard problem!
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Application: Logic Programming II

Prolog program

color(red). color(blue). color(green). color(yellow).

neighbor(StateAColor, StateBColor) :-

color(StateAColor), color(StateBColor),

StateAColor \= StateBColor.

switzerland(AG, AI, AR, BE, BL, BS, FR, GE, GL, GR,

JU, LU, NE, NW, OW, SG, SH, SO, SZ, TG,

TI, UR, VD, VS, ZG, ZH) :-

neighbor(AG, BE), neighbor(AG, BL), neighbor(AG, LU),

...

neighbor(UR, VS), neighbor(VD, VS), neighbor(ZH, ZG).
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What Logic is About

General Question:

Given some knowledge about the world (a knowledge base)

what can we derive from it?

And on what basis may we argue?

 logic

Goal: “mechanical” proofs

formal “game with letters”

detached from a concrete meaning
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Task

What’s the secret of your long life?

I am on a strict diet: If I don’t drink beer
to a meal, then I always eat fish. When-
ever I have fish and beer with the same
meal, I abstain from ice cream. When I
eat ice cream or don’t drink beer, then I
never touch fish.

Simplify this advice!

Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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Propositional Logic

Propositional logic is a simple logic without numbers or objects.

Building blocks of propositional logic:

propositions are statements that can be either true or false

atomic propositions cannot be split into sub-propositions

logical connectives connect propositions to form new ones

German: Aussagenlogik, Aussage, atomare Aussage, Junktoren
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Examples for Building Blocks

If I don’t drink beer to a meal, then I
always eat fish. Whenever I have fish and
beer with the same meal, I abstain from
ice cream. When I eat ice cream or don’t
drink beer, then I never touch fish.

Every sentence is a proposition that consists of
sub-propositions (e. g., “eat ice cream or don’t drink beer”).

atomic propositions “drink beer”, “eat fish”, “eat ice cream”

logical connectives “and”, “or”, negation, “if, then”

Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net



Motivation Syntax Semantics Properties of Propositional Formulas Equivalences Summary

Problems with Natural Language

If I don’t drink beer to a meal, then I
always eat fish.
Whenever I have fish and beer with the
same meal, I abstain from ice cream.
When I eat ice cream or don’t drink
beer, then I never touch fish.

“irrelevant” information

different formulations for the same connective/proposition

Exercise from U. Schöning: Logik für Informatiker
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Problems with Natural Language

If not DrinkBeer, then EatFish.
If EatFish and DrinkBeer,
then not EatIceCream.
If EatIceCream or not DrinkBeer,
then not EatFish.

“irrelevant” information

different formulations for the same connective/proposition

Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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What is Next?

What are meaningful (well-defined) sequences of
atomic propositions and connectives?
“if then EatIceCream not or DrinkBeer and” not meaningful
→ syntax

What does it mean if we say that a statement is true?
Is “DrinkBeer and EatFish” true?
→ semantics

When does a statement logically follow from another?
Does “EatFish” follow from “if DrinkBeer, then EatFish”?
→ logical entailment

German: Syntax, Semantik, logische Folgerung
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Questions

Questions?
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Syntax of Propositional Logic

Definition (Syntax of Propositional Logic)

Let A be a set of atomic propositions. The set of propositional
formulas (over A) is inductively defined as follows:

Every atom a ∈ A is a propositional formula over A.

If ϕ is a propositional formula over A,
then so is its negation ¬ϕ.

If ϕ and ψ are propositional formulas over A,
then so is the conjunction (ϕ ∧ ψ).

If ϕ and ψ are propositional formulas over A,
then so is the disjunction (ϕ ∨ ψ).

The implication (ϕ→ ψ) is an abbreviation for (¬ϕ ∨ ψ).
The biconditional (ϕ↔ ψ) is an abbrev. for ((ϕ→ ψ)∧ (ψ → ϕ)).
German: atomare Aussage, aussagenlogische Formel, Atom, Negation,
Konjunktion, Disjunktion, Implikation, Bikonditional
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Syntax: Examples

Which of the following sequences of symbols are propositional
formulas over the set of all possible letter sequences?

(A ∧ (B ∨ C))

((EatFish ∧ DrinkBeer)→ ¬EatIceCream)

¬( ∧ Rain ∨ StreetWet)

¬(Rain ∨ StreetWet)

¬(A = B)

(A ∧ ¬(B↔)C)

(A ∨ ¬(B↔ C))

((A ≤ B) ∧ C)

((A1 ∧ A2) ∨ ¬(A3 ↔ A2))

Which kinds of formula are they (atom, conjunction, . . . )?
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Questions?
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Meaning of Propositional Formulas?

So far propositional formulas are only symbol sequences
without any meaning.

For example, what does this mean:
((EatFish ∧ DrinkBeer)→ ¬EatIceCream)?

. We need semantics!
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Semantics of Propositional Logic

Definition (Semantics of Propositional Logic)

A truth assignment (or interpretation) for a set of atomic
propositions A is a function I : A→ {0, 1}.
A propositional formula ϕ (over A) holds under I
(written as I |= ϕ) according to the following definition:

I |= a iff I(a) = 1 (for a ∈ A)
I |= ¬ϕ iff not I |= ϕ
I |= (ϕ ∧ ψ) iff I |= ϕ and I |= ψ
I |= (ϕ ∨ ψ) iff I |= ϕ or I |= ψ

Question: should we define semantics of (ϕ→ ψ) and (ϕ↔ ψ)?

German: Wahrheitsbelegung/Interpretation, ϕ gilt unter I
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Semantics of Propositional Logic: Terminology

For I |= ϕ we also say I is a model of ϕ
and that ϕ is true under I.

If ϕ does not hold under I, we write this as I 6|= ϕ
and say that I is no model of ϕ
and that ϕ is false under I.

Note: |= is not part of the formula
but part of the meta language (speaking about a formula).

German: I ist ein/kein Modell von ϕ; ϕ ist wahr/falsch unter I; Metasprache
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Semantics: Example (1)

A = {DrinkBeer,EatFish,EatIceCream}
I = {DrinkBeer 7→ 1,EatFish 7→ 0,EatIceCream 7→ 1}
ϕ = (¬DrinkBeer→ EatFish)

Do we have I |= ϕ?
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Semantics: Example (2)

Goal: prove I |= ϕ.

Let us use the definitions we have seen:

I |= ϕ iff I |= (¬DrinkBeer→ EatFish)

iff I |= (¬¬DrinkBeer ∨ EatFish)

iff I |= ¬¬DrinkBeer or I |= EatFish

This means that if we want to prove I |= ϕ, it is sufficient to prove

I |= ¬¬DrinkBeer

or to prove
I |= EatFish.

We attempt to prove the first of these statements.
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Semantics: Example (3)

New goal: prove I |= ¬¬DrinkBeer.

We again use the definitions:

I |= ¬¬DrinkBeer iff not I |= ¬DrinkBeer

iff not not I |= DrinkBeer

iff I |= DrinkBeer

iff I(DrinkBeer) = 1

The last statement is true for our interpretation I.

To write this up as a proof of I |= ϕ,
we can go through this line of reasoning back-to-front,
starting from our assumptions and ending with the conclusion
we want to show.
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Semantics: Example (4)

Let I = {DrinkBeer 7→ 1,EatFish 7→ 0,EatIceCream 7→ 1}.
Proof that I |= (¬DrinkBeer→ EatFish):

(1) We have I |= DrinkBeer
(uses defn. of |= for atomic props. and fact I(DrinkBeer) = 1).

(2) From (1), we get I 6|= ¬DrinkBeer
(uses defn. of |= for negations).

(3) From (2), we get I |= ¬¬DrinkBeer
(uses defn. of |= for negations).

(4) From (3), we get I |= (¬¬DrinkBeer ∨ ψ) for all formulas ψ,
in particular I |= (¬¬DrinkBeer ∨ EatFish)
(uses defn. of |= for disjunctions).

(5) From (4), we get I |= (¬DrinkBeer→ EatFish)
(uses defn. of “→”). �
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Questions

Questions?
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Properties of Propositional Formulas

A propositional formula ϕ is

satisfiable if ϕ has at least one model

unsatisfiable if ϕ is not satisfiable

valid (or a tautology) if ϕ is true under every interpretation

falsifiable if ϕ is no tautology

German: erfüllbar, unerfüllbar, gültig/eine Tautologie, falsifizierbar

How can we show that a formula has one of these properties?
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Examples

Show that (A ∧ B) is satisfiable.

I = {A 7→ 1,B 7→ 1} (+ simple proof that I |= (A ∧ B))

Show that (A ∧ B) is falsifiable.

I = {A 7→ 0,B 7→ 1} (+ simple proof that I 6|= (A ∧ B))

Show that (A ∧ B) is not valid.

Follows directly from falsifiability.

Show that (A ∧ B) is not unsatisfiable.

Follows directly from satisfiability.

So far all proofs by specifying one interpretation.

How to prove that a given formula is valid/unsatisfiable/
not satisfiable/not falsifiable?

 must consider all possible interpretations
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Truth Tables

Evaluate for all possible interpretations
if they are models of the considered formula.

I(A) I |= ¬A

0

Yes

1

No

I(A) I(B) I |= (A ∧ B)

0 0

No

0 1

No

1 0

No

1 1

Yes

I(A) I(B) I |= (A ∨ B)

0 0 No
0 1 Yes
1 0 Yes
1 1 Yes



Motivation Syntax Semantics Properties of Propositional Formulas Equivalences Summary

Truth Tables

Evaluate for all possible interpretations
if they are models of the considered formula.

I(A) I |= ¬A

0

Yes

1

No

I(A) I(B) I |= (A ∧ B)

0 0

No

0 1

No

1 0

No

1 1

Yes

I(A) I(B) I |= (A ∨ B)

0 0 No
0 1 Yes
1 0 Yes
1 1 Yes



Motivation Syntax Semantics Properties of Propositional Formulas Equivalences Summary

Truth Tables

Evaluate for all possible interpretations
if they are models of the considered formula.

I(A) I |= ¬A

0 Yes
1 No

I(A) I(B) I |= (A ∧ B)

0 0

No

0 1

No

1 0

No

1 1

Yes

I(A) I(B) I |= (A ∨ B)

0 0 No
0 1 Yes
1 0 Yes
1 1 Yes



Motivation Syntax Semantics Properties of Propositional Formulas Equivalences Summary

Truth Tables

Evaluate for all possible interpretations
if they are models of the considered formula.

I(A) I |= ¬A

0 Yes
1 No

I(A) I(B) I |= (A ∧ B)

0 0

No

0 1

No

1 0

No

1 1

Yes

I(A) I(B) I |= (A ∨ B)

0 0 No
0 1 Yes
1 0 Yes
1 1 Yes



Motivation Syntax Semantics Properties of Propositional Formulas Equivalences Summary

Truth Tables

Evaluate for all possible interpretations
if they are models of the considered formula.

I(A) I |= ¬A

0 Yes
1 No

I(A) I(B) I |= (A ∧ B)

0 0 No
0 1 No
1 0 No
1 1 Yes

I(A) I(B) I |= (A ∨ B)

0 0 No
0 1 Yes
1 0 Yes
1 1 Yes



Motivation Syntax Semantics Properties of Propositional Formulas Equivalences Summary

Truth Tables

Evaluate for all possible interpretations
if they are models of the considered formula.

I(A) I |= ¬A

0 Yes
1 No

I(A) I(B) I |= (A ∧ B)

0 0 No
0 1 No
1 0 No
1 1 Yes

I(A) I(B) I |= (A ∨ B)

0 0 No
0 1 Yes
1 0 Yes
1 1 Yes



Motivation Syntax Semantics Properties of Propositional Formulas Equivalences Summary

Truth Tables in General

Similarly in the case where we consider a formula whose building
blocks are themselves arbitrary unspecified formulas:

I |= ϕ I |= ψ I |= (ϕ ∧ ψ)

No No No
No Yes No
Yes No No
Yes Yes Yes
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Truth Tables for Properties of Formulas

Is ϕ = ((A→ B) ∨ (¬B→ A)) valid, unsatisfiable, . . . ?

I(A) I(B) I |= ¬B I |= (A→ B) I |= (¬B→ A) I |= ϕ

0 0 Yes Yes No Yes
0 1 No Yes Yes Yes
1 0 Yes No Yes Yes
1 1 No Yes Yes Yes
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Connection Between Formula Properties and Truth Tables

A propositional formula ϕ is

satisfiable if ϕ has at least one model
 result in at least one row is “Yes”

unsatisfiable if ϕ is not satisfiable
 result in all rows is “No”

valid (or a tautology) if ϕ is true under every interpretation
 result in all rows is “Yes”

falsifiable if ϕ is no tautology
 result in at least one row is “No”
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Main Disadvantage of Truth Tables

How big is a truth table with n atomic propositions?

1 2 interpretations (rows)
2 4 interpretations (rows)
3 8 interpretations (rows)
n 2n interpretations

Some examples: 210 = 1024, 220 = 1048576, 230 = 1073741824

 not viable for larger formulas; we need a different solution

more on difficulty of satisfiability etc.: Part E of this course

practical algorithms: Foundations of AI course
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Questions?
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Equivalent Formulas

Definition (Equivalence of Propositional Formulas)

Two propositional formulas ϕ and ψ over A are (logically)
equivalent (ϕ ≡ ψ) if for all interpretations I for A
it is true that I |= ϕ if and only if I |= ψ.

German: logisch äquivalent
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Equivalent Formulas: Example

((ϕ ∨ ψ) ∨ χ) ≡ (ϕ ∨ (ψ ∨ χ))

I |= I |= I |= I |= I |= I |= I |=
ϕ ψ χ (ϕ ∨ ψ) (ψ ∨ χ) ((ϕ ∨ ψ) ∨ χ) (ϕ ∨ (ψ ∨ χ))

No No No No No No No
No No Yes No Yes Yes Yes
No Yes No Yes Yes Yes Yes
No Yes Yes Yes Yes Yes Yes
Yes No No Yes No Yes Yes
Yes No Yes Yes Yes Yes Yes
Yes Yes No Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes Yes
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Some Equivalences (1)

(ϕ ∧ ϕ) ≡ ϕ
(ϕ ∨ ϕ) ≡ ϕ (idempotence)

(ϕ ∧ ψ) ≡ (ψ ∧ ϕ)

(ϕ ∨ ψ) ≡ (ψ ∨ ϕ) (commutativity)

((ϕ ∧ ψ) ∧ χ) ≡ (ϕ ∧ (ψ ∧ χ))

((ϕ ∨ ψ) ∨ χ) ≡ (ϕ ∨ (ψ ∨ χ)) (associativity)

German: Idempotenz

, Kommutativität, Assoziativität
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Some Equivalences (2)

(ϕ ∧ (ϕ ∨ ψ)) ≡ ϕ
(ϕ ∨ (ϕ ∧ ψ)) ≡ ϕ (absorption)

(ϕ ∧ (ψ ∨ χ)) ≡ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))

(ϕ ∨ (ψ ∧ χ)) ≡ ((ϕ ∨ ψ) ∧ (ϕ ∨ χ)) (distributivity)

German: Absorption

, Distributivität
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Some Equivalences (2)

(ϕ ∧ (ϕ ∨ ψ)) ≡ ϕ
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German: Absorption, Distributivität
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Some Equivalences (3)

¬¬ϕ ≡ ϕ (Double negation)

¬(ϕ ∧ ψ) ≡ (¬ϕ ∨ ¬ψ)

¬(ϕ ∨ ψ) ≡ (¬ϕ ∧ ¬ψ) (De Morgan’s rules)

(ϕ ∨ ψ) ≡ ϕ if ϕ tautology

(ϕ ∧ ψ) ≡ ψ if ϕ tautology (tautology rules)

(ϕ ∨ ψ) ≡ ψ if ϕ unsatisfiable

(ϕ ∧ ψ) ≡ ϕ if ϕ unsatisfiable (unsatisfiability rules)

German: Doppelnegation

, De Morgansche Regeln, Tautologieregeln,
Unerfüllbarkeitsregeln
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Substitution Theorem

Theorem (Substitution Theorem)

Let ϕ and ϕ′ be equivalent propositional formulas over A.
Let ψ be a propositional formula with (at least)
one occurrence of the subformula ϕ.

Then ψ is equivalent to ψ′, where ψ′ is constructed from ψ
by replacing an occurrence of ϕ in ψ with ϕ′.

German: Ersetzbarkeitstheorem

(without proof)
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Application of Equivalences: Example

(P ∧ (¬Q ∨ P)) ≡ ((P ∧ ¬Q) ∨ (P ∧ P)) (distributivity)

≡ ((P ∧ ¬Q) ∨ P) (idempotence)

≡ (P ∨ (P ∧ ¬Q)) (commutativity)

≡ P (absorption)
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Summary

propositional logic based on atomic propositions

syntax defines what well-formed formulas are

semantics defines when a formula is true

interpretations are the basis of semantics

satisfiability and validity are important properties of formulas

truth tables systematically consider all possible interpretations

truth tables are only useful for small formulas

Logical equivalence describes when formulas are
semantically indistinguishable.

Equivalence rewriting is used to simplify formulas
and to bring them in normal forms (next lecture).
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