

Theory of Computer Science

B1. Propositional Logic I

Gabriele Röger

University of Basel

February 25, 2019

Theory of Computer Science

February 25, 2019 — B1. Propositional Logic I

B1.1 Motivation

B1.2 Syntax

B1.3 Semantics

B1.4 Properties of Propositional Formulas

B1.5 Equivalences

B1.1 Motivation

Why Logic?

- ▶ formalizing mathematics
 - ▶ What is a true statement?
 - ▶ What is a valid proof?
- ▶ basis of many tools in computer science
 - ▶ design of digital circuits
 - ▶ semantics of databases; query optimization
 - ▶ meaning of programming languages
 - ▶ verification of safety-critical hardware/software
 - ▶ knowledge representation in artificial intelligence
 - ▶ logic-based programming languages (e.g. Prolog)
 - ▶ ...

Application: Logic Programming I

Declarative approach: Describe **what** to accomplish
not how to accomplish it.

Example (Map Coloring)

Color each region in a map with a limited number of colors
so that no two adjacent regions have the same color.

This is a hard problem!

CC BY-SA 3.0 Wikimedia Commons (TUBS)

Application: Logic Programming II

Prolog program

```
color(red). color(blue). color(green). color(yellow).  
  
neighbor(StateAColor, StateBColor) :-  
    color(StateAColor), color(StateBColor),  
    StateAColor \= StateBColor.  
  
switzerland(AG, AI, AR, BE, BL, BS, FR, GE, GL, GR,  
           JU, LU, NE, NW, OW, SG, SH, SO, SZ, TG,  
           TI, UR, VD, VS, ZG, ZH) :-  
    neighbor(AG, BE), neighbor(AG, BL), neighbor(AG, LU),  
    ...  
    neighbor(UR, VS), neighbor(VD, VS), neighbor(ZH, ZG).
```

What Logic is About

General Question:

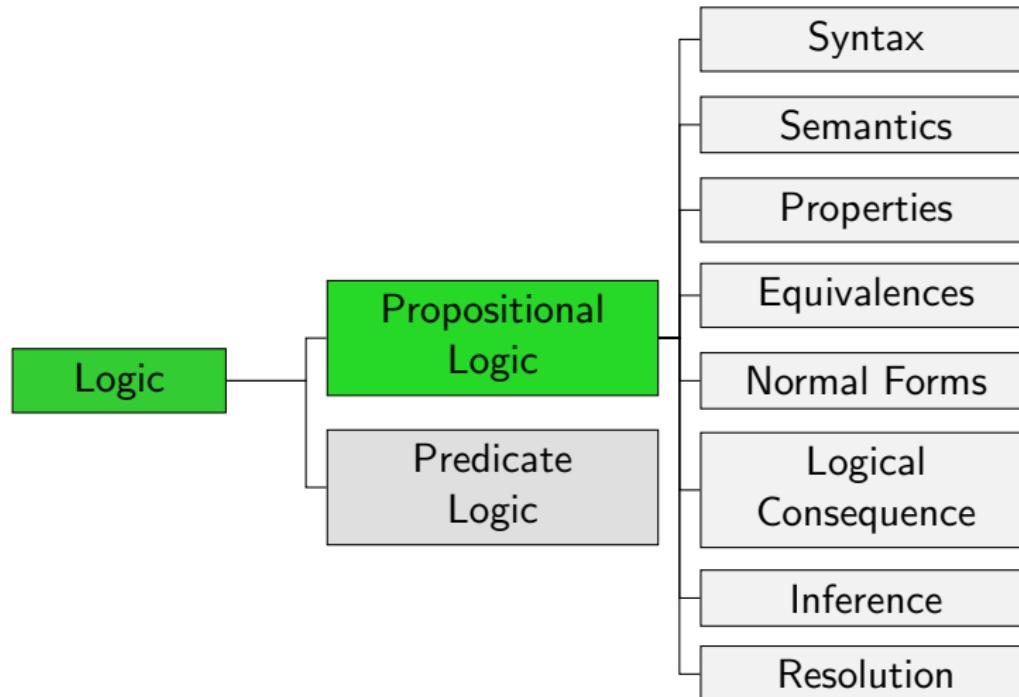
- ▶ Given some knowledge about the world (a knowledge base)
- ▶ what can we **derive** from it?
- ▶ And on what basis may we argue?

~~~ **logic**

Goal: “mechanical” proofs

- ▶ formal “game with letters”
- ▶ detached from a concrete meaning

# Logic: Overview



# Task

What's the secret of your long life?



I am on a strict diet: If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

Simplify this advice!

Exercise from U. Schöning: Logik für Informatiker  
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

# Propositional Logic

**Propositional logic** is a simple logic without numbers or objects.

Building blocks of propositional logic:

- ▶ **propositions** are statements that can be either true or false
- ▶ **atomic propositions** cannot be split into sub-propositions
- ▶ **logical connectives** connect propositions to form new ones

German: Aussagenlogik, Aussage, atomare Aussage, Junktoren

# Examples for Building Blocks



If I don't **drink beer** to a meal, then I always **eat fish**. Whenever I **have fish** and **beer** with the same meal, I abstain from **ice cream**. When I **eat ice cream** or don't **drink beer**, then I never touch **fish**.

- ▶ Every sentence is a proposition that consists of sub-propositions (e. g., "eat ice cream or don't drink beer").
- ▶ atomic propositions "**drink beer**", "**eat fish**", "**eat ice cream**"
- ▶ logical connectives "and", "or", negation, "if, then"

Exercise from U. Schöning: Logik für Informatiker  
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

# Examples for Building Blocks



If I **don't** drink beer to a meal, then I always eat fish. Whenever I have fish **and** beer with the same meal, I **abstain** from ice cream. When I eat ice cream **or** don't drink beer, then I **never** touch fish.

- ▶ Every sentence is a proposition that consists of sub-propositions (e. g., “eat ice cream or don't drink beer”).
- ▶ atomic propositions “drink beer”, “eat fish”, “eat ice cream”
- ▶ logical connectives “**and**”, “**or**”, **negation**, “**if, then**”

Exercise from U. Schöning: Logik für Informatiker  
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

# Problems with Natural Language



If I don't drink beer **to a meal**, then I **always** eat fish.

Whenever I have fish and beer **with the same meal**, I abstain from ice cream.

When I eat ice cream or don't drink beer, then I never touch fish.

- ▶ “irrelevant” information

Exercise from U. Schöning: Logik für Informatiker  
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

# Problems with Natural Language



If I **don't** drink beer, then I eat fish.  
Whenever I have fish and beer, I **abstain** from ice cream.  
When I eat ice cream or **don't** drink beer, then I **never** touch fish.

- ▶ “irrelevant” information
- ▶ different formulations for the same connective/proposition

Exercise from U. Schöning: Logik für Informatiker  
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

# Problems with Natural Language



If not DrinkBeer, then EatFish.  
If EatFish and DrinkBeer,  
then not EatIceCream.  
If EatIceCream or not DrinkBeer,  
then not EatFish.

- ▶ “irrelevant” information
- ▶ different formulations for the same connective/proposition

Exercise from U. Schöning: Logik für Informatiker  
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

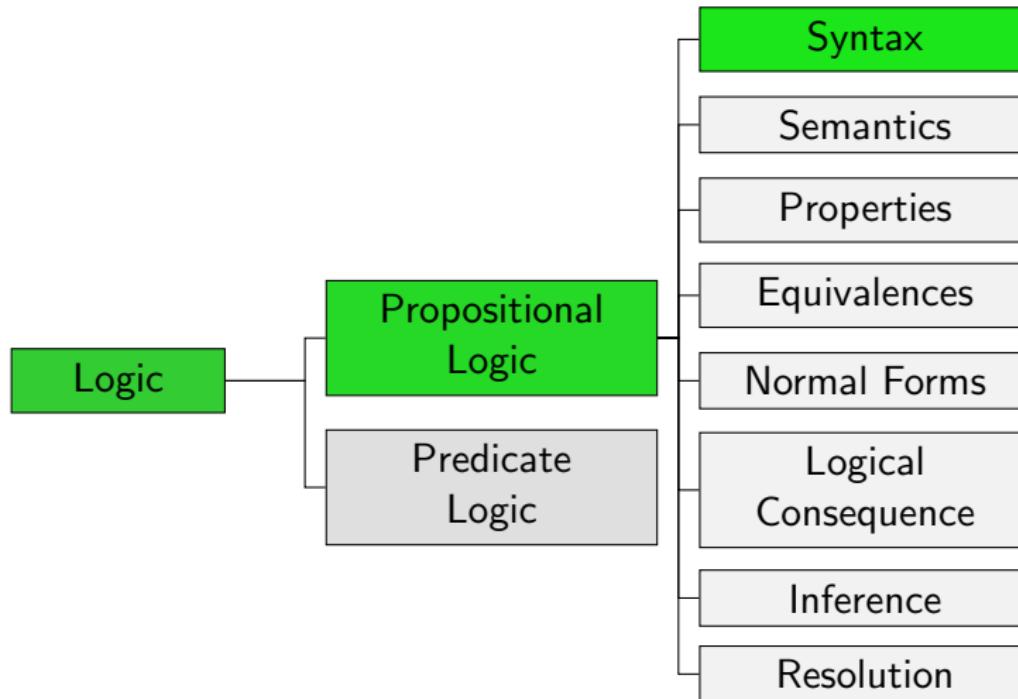
# What is Next?

- ▶ What are meaningful (well-defined) sequences of atomic propositions and connectives?  
"if then EatIceCream not or DrinkBeer and" not meaningful  
→ **syntax**
- ▶ What does it mean if we say that a statement is true?  
Is "DrinkBeer and EatFish" true?  
→ **semantics**
- ▶ When does a statement logically follow from another?  
Does "EatFish" follow from "if DrinkBeer, then EatFish" ?  
→ **logical entailment**

German: Syntax, Semantik, logische Folgerung

## B1.2 Syntax

# Logic: Overview



# Syntax of Propositional Logic

## Definition (Syntax of Propositional Logic)

Let  $A$  be a set of **atomic propositions**. The set of **propositional formulas** (over  $A$ ) is inductively defined as follows:

- ▶ Every **atom  $a$**   $\in A$  is a propositional formula over  $A$ .
- ▶ If  $\varphi$  is a propositional formula over  $A$ ,  
then so is its **negation**  $\neg\varphi$ .
- ▶ If  $\varphi$  and  $\psi$  are propositional formulas over  $A$ ,  
then so is the **conjunction**  $(\varphi \wedge \psi)$ .
- ▶ If  $\varphi$  and  $\psi$  are propositional formulas over  $A$ ,  
then so is the **disjunction**  $(\varphi \vee \psi)$ .

The **implication**  $(\varphi \rightarrow \psi)$  is an abbreviation for  $(\neg\varphi \vee \psi)$ .

The **biconditional**  $(\varphi \leftrightarrow \psi)$  is an abbrev. for  $((\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi))$ .

**German:** atomare Aussage, aussagenlogische Formel, Atom, Negation, Konjunktion, Disjunktion, Implikation, Bikonditional

## Syntax: Examples

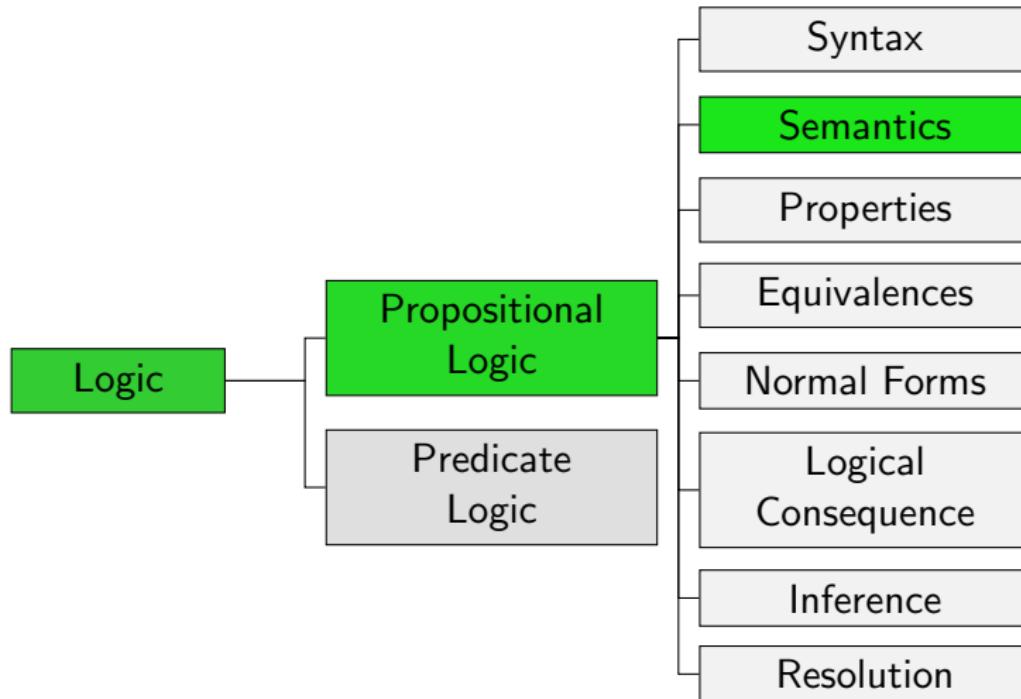
Which of the following sequences of symbols are propositional formulas over the set of all possible letter sequences?

- ▶  $(A \wedge (B \vee C))$
- ▶  $((\text{EatFish} \wedge \text{DrinkBeer}) \rightarrow \neg \text{EatIceCream})$
- ▶  $\neg(A \wedge \text{Rain} \vee \text{StreetWet})$
- ▶  $\neg(\text{Rain} \vee \text{StreetWet})$
- ▶  $\neg(A = B)$
- ▶  $(A \wedge \neg(B \leftrightarrow C))$
- ▶  $(A \vee \neg(B \leftrightarrow C))$
- ▶  $((A \leq B) \wedge C)$
- ▶  $((A_1 \wedge A_2) \vee \neg(A_3 \leftrightarrow A_2))$

Which kinds of formula are they (atom, conjunction, ...)?

## B1.3 Semantics

# Logic: Overview



# Meaning of Propositional Formulas?

So far propositional formulas are only symbol sequences without any meaning.

For example, what does this mean:

$$((\text{EatFish} \wedge \text{DrinkBeer}) \rightarrow \neg \text{EatIceCream})?$$

▷ We need semantics!

# Semantics of Propositional Logic

## Definition (Semantics of Propositional Logic)

A **truth assignment** (or **interpretation**) for a set of atomic propositions  $A$  is a function  $\mathcal{I} : A \rightarrow \{0, 1\}$ .

A propositional **formula**  $\varphi$  (over  $A$ ) holds under  $\mathcal{I}$  (written as  $\mathcal{I} \models \varphi$ ) according to the following definition:

$$\mathcal{I} \models a \quad \text{iff} \quad \mathcal{I}(a) = 1 \quad (\text{for } a \in A)$$

$$\mathcal{I} \models \neg \varphi \quad \text{iff} \quad \text{not } \mathcal{I} \models \varphi$$

$$\mathcal{I} \models (\varphi \wedge \psi) \quad \text{iff} \quad \mathcal{I} \models \varphi \text{ and } \mathcal{I} \models \psi$$

$$\mathcal{I} \models (\varphi \vee \psi) \quad \text{iff} \quad \mathcal{I} \models \varphi \text{ or } \mathcal{I} \models \psi$$

**Question:** should we define semantics of  $(\varphi \rightarrow \psi)$  and  $(\varphi \leftrightarrow \psi)$ ?

**German:** Wahrheitsbelegung/Interpretation,  $\varphi$  gilt unter  $\mathcal{I}$

# Semantics of Propositional Logic: Terminology

- ▶ For  $\mathcal{I} \models \varphi$  we also say  $\mathcal{I}$  is a model of  $\varphi$  and that  $\varphi$  is true under  $\mathcal{I}$ .
- ▶ If  $\varphi$  does not hold under  $\mathcal{I}$ , we write this as  $\mathcal{I} \not\models \varphi$  and say that  $\mathcal{I}$  is no model of  $\varphi$  and that  $\varphi$  is false under  $\mathcal{I}$ .
- ▶ Note:  $\models$  is not part of the formula but part of the meta language (speaking about a formula).

German:  $\mathcal{I}$  ist ein/kein Modell von  $\varphi$ ;  $\varphi$  ist wahr/falsch unter  $\mathcal{I}$ ; Metasprache

## Semantics: Example (1)

$$A = \{\text{DrinkBeer}, \text{EatFish}, \text{EatIceCream}\}$$

$$\mathcal{I} = \{\text{DrinkBeer} \mapsto 1, \text{EatFish} \mapsto 0, \text{EatIceCream} \mapsto 1\}$$

$$\varphi = (\neg \text{DrinkBeer} \rightarrow \text{EatFish})$$

Do we have  $\mathcal{I} \models \varphi$ ?

## Semantics: Example (2)

Goal: prove  $\mathcal{I} \models \varphi$ .

Let us use the definitions we have seen:

$$\begin{aligned}\mathcal{I} \models \varphi &\text{ iff } \mathcal{I} \models (\neg \text{DrinkBeer} \rightarrow \text{EatFish}) \\ &\text{ iff } \mathcal{I} \models (\neg \neg \text{DrinkBeer} \vee \text{EatFish}) \\ &\text{ iff } \mathcal{I} \models \neg \neg \text{DrinkBeer} \text{ or } \mathcal{I} \models \text{EatFish}\end{aligned}$$

This means that if we want to prove  $\mathcal{I} \models \varphi$ , it is sufficient to prove

$$\mathcal{I} \models \neg \neg \text{DrinkBeer}$$

or to prove

$$\mathcal{I} \models \text{EatFish}.$$

We attempt to prove the first of these statements.

## Semantics: Example (3)

New goal: prove  $\mathcal{I} \models \neg\neg \text{DrinkBeer}$ .

We again use the definitions:

$$\begin{aligned}\mathcal{I} \models \neg\neg \text{DrinkBeer} &\text{ iff not } \mathcal{I} \models \neg \text{DrinkBeer} \\ &\text{ iff not not } \mathcal{I} \models \text{DrinkBeer} \\ &\text{ iff } \mathcal{I} \models \text{DrinkBeer} \\ &\text{ iff } \mathcal{I}(\text{DrinkBeer}) = 1\end{aligned}$$

The last statement is true for our interpretation  $\mathcal{I}$ .

To write this up as a **proof** of  $\mathcal{I} \models \varphi$ ,  
we can go through this line of reasoning back-to-front,  
starting from our assumptions and ending with the conclusion  
we want to show.

## Semantics: Example (4)

Let  $\mathcal{I} = \{\text{DrinkBeer} \mapsto 1, \text{EatFish} \mapsto 0, \text{EatIceCream} \mapsto 1\}$ .

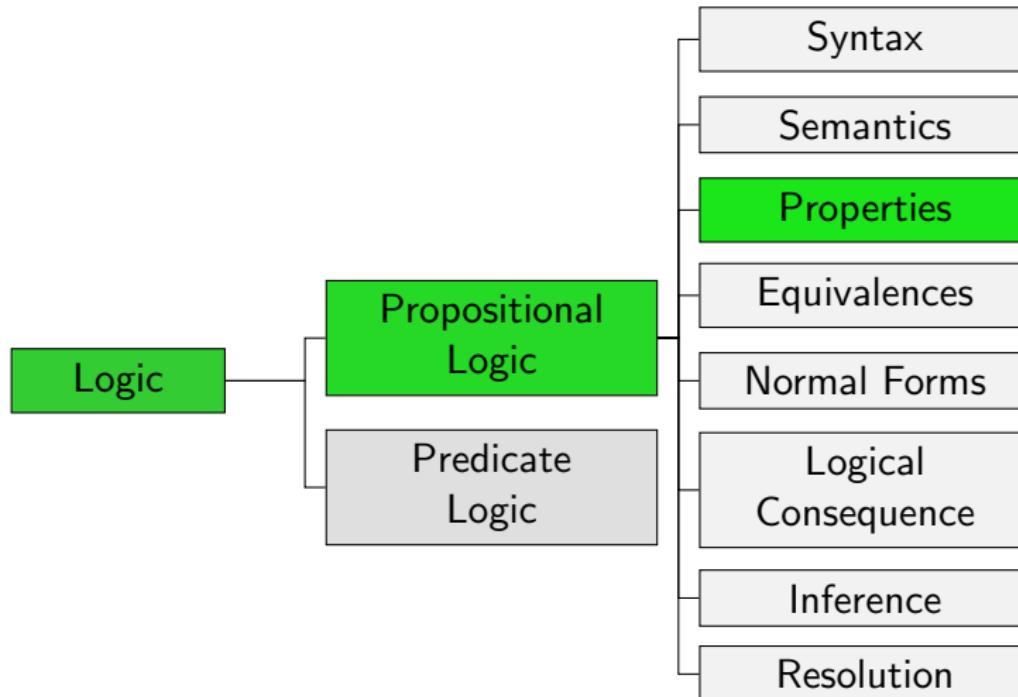
**Proof** that  $\mathcal{I} \models (\neg \text{DrinkBeer} \rightarrow \text{EatFish})$ :

- (1) We have  $\mathcal{I} \models \text{DrinkBeer}$   
(uses defn. of  $\models$  for atomic props. and fact  $\mathcal{I}(\text{DrinkBeer}) = 1$ ).
- (2) From (1), we get  $\mathcal{I} \not\models \neg \text{DrinkBeer}$   
(uses defn. of  $\models$  for negations).
- (3) From (2), we get  $\mathcal{I} \models \neg \neg \text{DrinkBeer}$   
(uses defn. of  $\models$  for negations).
- (4) From (3), we get  $\mathcal{I} \models (\neg \neg \text{DrinkBeer} \vee \psi)$  for all formulas  $\psi$ ,  
in particular  $\mathcal{I} \models (\neg \neg \text{DrinkBeer} \vee \text{EatFish})$   
(uses defn. of  $\models$  for disjunctions).
- (5) From (4), we get  $\mathcal{I} \models (\neg \text{DrinkBeer} \rightarrow \text{EatFish})$   
(uses defn. of " $\rightarrow$ ").

□

## B1.4 Properties of Propositional Formulas

# Logic: Overview



# Properties of Propositional Formulas

A propositional formula  $\varphi$  is

- ▶ **satisfiable** if  $\varphi$  has at least one model
- ▶ **unsatisfiable** if  $\varphi$  is not satisfiable
- ▶ **valid** (or a **tautology**) if  $\varphi$  is true under every interpretation
- ▶ **falsifiable** if  $\varphi$  is no tautology

German: erfüllbar, unerfüllbar, gültig/eine Tautologie, falsifizierbar

How can we show that a formula has one of these properties?

# Examples

- ▶ Show that  $(A \wedge B)$  is **satisfiable**.  
 $\mathcal{I} = \{A \mapsto 1, B \mapsto 1\}$  (+ simple proof that  $\mathcal{I} \models (A \wedge B)$ )
- ▶ Show that  $(A \wedge B)$  is **falsifiable**.  
 $\mathcal{I} = \{A \mapsto 0, B \mapsto 1\}$  (+ simple proof that  $\mathcal{I} \not\models (A \wedge B)$ )
- ▶ Show that  $(A \wedge B)$  is **not valid**.  
Follows directly from falsifiability.
- ▶ Show that  $(A \wedge B)$  is **not unsatisfiable**.  
Follows directly from satisfiability.

So far all proofs by specifying **one** interpretation.

How to prove that a given formula is valid/unsatisfiable/  
not satisfiable/not falsifiable?

~~ must consider **all possible** interpretations

# Truth Tables

Evaluate for all possible interpretations  
if they are models of the considered formula.

| $\mathcal{I}(A)$ | $\mathcal{I} \models \neg A$ |
|------------------|------------------------------|
| 0                | Yes                          |
| 1                | No                           |

| $\mathcal{I}(A)$ | $\mathcal{I}(B)$ | $\mathcal{I} \models (A \wedge B)$ |
|------------------|------------------|------------------------------------|
| 0                | 0                | No                                 |
| 0                | 1                | No                                 |
| 1                | 0                | No                                 |
| 1                | 1                | Yes                                |

| $\mathcal{I}(A)$ | $\mathcal{I}(B)$ | $\mathcal{I} \models (A \vee B)$ |
|------------------|------------------|----------------------------------|
| 0                | 0                | No                               |
| 0                | 1                | Yes                              |
| 1                | 0                | Yes                              |
| 1                | 1                | Yes                              |

## Truth Tables in General

Similarly in the case where we consider a formula whose building blocks are themselves arbitrary unspecified formulas:

| $\mathcal{I} \models \varphi$ | $\mathcal{I} \models \psi$ | $\mathcal{I} \models (\varphi \wedge \psi)$ |
|-------------------------------|----------------------------|---------------------------------------------|
| No                            | No                         | No                                          |
| No                            | Yes                        | No                                          |
| Yes                           | No                         | No                                          |
| Yes                           | Yes                        | Yes                                         |

# Truth Tables for Properties of Formulas

Is  $\varphi = ((A \rightarrow B) \vee (\neg B \rightarrow A))$  valid, unsatisfiable, ...?

| $\mathcal{I}(A)$ | $\mathcal{I}(B)$ | $\mathcal{I} \models \neg B$ | $\mathcal{I} \models (A \rightarrow B)$ | $\mathcal{I} \models (\neg B \rightarrow A)$ | $\mathcal{I} \models \varphi$ |
|------------------|------------------|------------------------------|-----------------------------------------|----------------------------------------------|-------------------------------|
| 0                | 0                | Yes                          | Yes                                     | No                                           | Yes                           |
| 0                | 1                | No                           | Yes                                     | Yes                                          | Yes                           |
| 1                | 0                | Yes                          | No                                      | Yes                                          | Yes                           |
| 1                | 1                | No                           | Yes                                     | Yes                                          | Yes                           |

# Connection Between Formula Properties and Truth Tables

A propositional formula  $\varphi$  is

- ▶ **satisfiable** if  $\varphi$  has at least one model  
     $\rightsquigarrow$  result in at least one row is “Yes”
- ▶ **unsatisfiable** if  $\varphi$  is not satisfiable  
     $\rightsquigarrow$  result in all rows is “No”
- ▶ **valid** (or a **tautology**) if  $\varphi$  is true under every interpretation  
     $\rightsquigarrow$  result in all rows is “Yes”
- ▶ **falsifiable** if  $\varphi$  is no tautology  
     $\rightsquigarrow$  result in at least one row is “No”

# Main Disadvantage of Truth Tables

How big is a truth table with  $n$  atomic propositions?

|     |                          |
|-----|--------------------------|
| 1   | 2 interpretations (rows) |
| 2   | 4 interpretations (rows) |
| 3   | 8 interpretations (rows) |
| $n$ | ??? interpretations      |

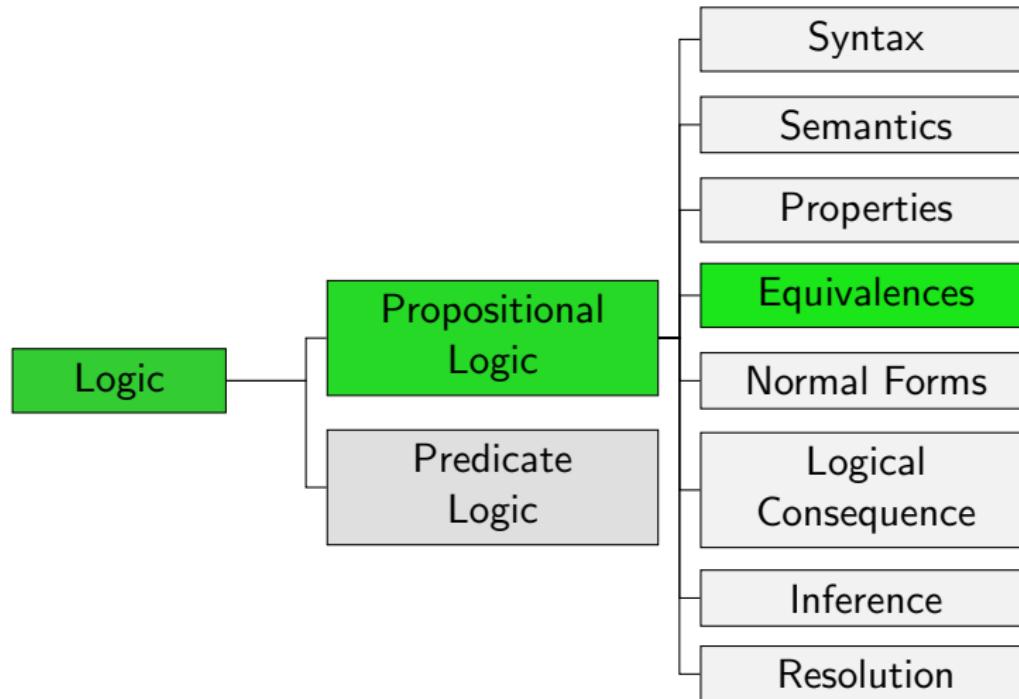
Some examples:  $2^{10} = 1024$ ,  $2^{20} = 1048576$ ,  $2^{30} = 1073741824$

↪ not viable for larger formulas; we need a different solution

- ▶ more on difficulty of satisfiability etc.: Part E of this course
- ▶ practical algorithms: Foundations of AI course

## B1.5 Equivalences

# Logic: Overview



# Equivalent Formulas

## Definition (Equivalence of Propositional Formulas)

Two propositional formulas  $\varphi$  and  $\psi$  over  $A$  are (logically) equivalent ( $\varphi \equiv \psi$ ) if for all interpretations  $\mathcal{I}$  for  $A$  it is true that  $\mathcal{I} \models \varphi$  if and only if  $\mathcal{I} \models \psi$ .

German: logisch äquivalent

# Equivalent Formulas: Example

$$((\varphi \vee \psi) \vee \chi) \equiv (\varphi \vee (\psi \vee \chi))$$

| $\mathcal{I} \models$             | $\mathcal{I} \models$             | | | | | |
|---|---|---|---|---|---|---|
| $\varphi$             | $\psi$                | $\chi$                | $(\varphi \vee \psi)$ | $(\psi \vee \chi)$    | $((\varphi \vee \psi) \vee \chi)$ | $(\varphi \vee (\psi \vee \chi))$ |
| No                    | No                    | No                    | No                    | No                    | No                                | No                                |
| No                    | No                    | Yes                   | No                    | Yes                   | Yes                               | Yes                               |
| No                    | Yes                   | No                    | Yes                   | Yes                   | Yes                               | Yes                               |
| No                    | Yes                   | Yes                   | Yes                   | Yes                   | Yes                               | Yes                               |
| Yes                   | No                    | No                    | Yes                   | No                    | Yes                               | Yes                               |
| Yes                   | No                    | Yes                   | Yes                   | Yes                   | Yes                               | Yes                               |
| Yes                   | Yes                   | No                    | Yes                   | Yes                   | Yes                               | Yes                               |
| Yes                   | Yes                   | Yes                   | Yes                   | Yes                   | Yes                               | Yes                               |

# Some Equivalences (1)

$$(\varphi \wedge \varphi) \equiv \varphi$$

$$(\varphi \vee \varphi) \equiv \varphi \quad (\text{idempotence})$$

$$(\varphi \wedge \psi) \equiv (\psi \wedge \varphi)$$

$$(\varphi \vee \psi) \equiv (\psi \vee \varphi) \quad (\text{commutativity})$$

$$((\varphi \wedge \psi) \wedge \chi) \equiv (\varphi \wedge (\psi \wedge \chi))$$

$$((\varphi \vee \psi) \vee \chi) \equiv (\varphi \vee (\psi \vee \chi)) \quad (\text{associativity})$$

German: Idempotenz, Kommutativität, Assoziativität

## Some Equivalences (2)

$$(\varphi \wedge (\varphi \vee \psi)) \equiv \varphi$$

$$(\varphi \vee (\varphi \wedge \psi)) \equiv \varphi \quad (\text{absorption})$$

$$(\varphi \wedge (\psi \vee \chi)) \equiv ((\varphi \wedge \psi) \vee (\varphi \wedge \chi))$$

$$(\varphi \vee (\psi \wedge \chi)) \equiv ((\varphi \vee \psi) \wedge (\varphi \vee \chi)) \quad (\text{distributivity})$$

German: Absorption, Distributivität

## Some Equivalences (3)

$$\neg\neg\varphi \equiv \varphi$$

(Double negation)

$$\neg(\varphi \wedge \psi) \equiv (\neg\varphi \vee \neg\psi)$$

$$\neg(\varphi \vee \psi) \equiv (\neg\varphi \wedge \neg\psi)$$

(De Morgan's rules)

$$(\varphi \vee \psi) \equiv \varphi \text{ if } \varphi \text{ tautology}$$

$$(\varphi \wedge \psi) \equiv \psi \text{ if } \varphi \text{ tautology}$$

(tautology rules)

$$(\varphi \vee \psi) \equiv \psi \text{ if } \varphi \text{ unsatisfiable}$$

$$(\varphi \wedge \psi) \equiv \varphi \text{ if } \varphi \text{ unsatisfiable}$$

(unsatisfiability rules)

**German:** Doppelnegation, De Morgansche Regeln, Tautologieregeln, Unerfüllbarkeitsregeln

# Substitution Theorem

## Theorem (Substitution Theorem)

Let  $\varphi$  and  $\varphi'$  be equivalent propositional formulas over  $A$ .

Let  $\psi$  be a propositional formula with (at least) one occurrence of the subformula  $\varphi$ .

Then  $\psi$  is equivalent to  $\psi'$ , where  $\psi'$  is constructed from  $\psi$  by replacing an occurrence of  $\varphi$  in  $\psi$  with  $\varphi'$ .

German: Ersetzbarkeitstheorem

(without proof)

# Application of Equivalences: Example

$$\begin{aligned}(P \wedge (\neg Q \vee P)) &\equiv ((P \wedge \neg Q) \vee (P \wedge P)) && \text{(distributivity)} \\ &\equiv ((P \wedge \neg Q) \vee P) && \text{(idempotence)} \\ &\equiv (P \vee (P \wedge \neg Q)) && \text{(commutativity)} \\ &\equiv P && \text{(absorption)}\end{aligned}$$

# Summary

- ▶ propositional logic based on atomic propositions
- ▶ syntax defines what well-formed formulas are
- ▶ semantics defines when a formula is true
- ▶ interpretations are the basis of semantics
- ▶ satisfiability and validity are important properties of formulas
- ▶ truth tables systematically consider all possible interpretations
- ▶ truth tables are only useful for small formulas
- ▶ Logical equivalence describes when formulas are semantically indistinguishable.
- ▶ Equivalence rewriting is used to simplify formulas and to bring them in normal forms (next lecture).