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Why Logic?

» formalizing mathematics

» What is a true statement?

» What is a valid proof?
» basis of many tools in computer science

» design of digital circuits
semantics of databases; query optimization
meaning of programming languages
verification of safety-critical hardware/software
knowledge representation in artificial intelligence
logic-based programming languages (e.g. Prolog)

vV vy vy VvV VY
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Application: Logic Programming |

Declarative approach: Describe what to accomplish
not how to accomplish it.

Example (Map Coloring)

Color each region in a map with a limited number of colors
so that no two adjacent regions have the same color.

DEUTSCHLAND.
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......... St
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This is a hard problem!
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Gabriele Roger (University of Basel) Theory of Computer Science February 25, 2019 5 /48



Motivation
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Application: Logic Programming Il

Prolog program

color(red). color(blue). color(green). color(yellow).

neighbor(StateAColor, StateBColor) :-
color(StateAColor), color(StateBColor),
StateAColor \= StateBColor.

switzerland(AG, AI, AR, BE, BL, BS, FR, GE, GL, GR,
JU, LU, NE, NwW, OW, SG, SH, SO, SZ, TG,
TI, UR, VD, VS, ZG, ZH) :-
neighbor (AG, BE), neighbor(AG, BL), neighbor(AG, LU),

neighbor (UR, VS), neighbor(VD, VS), neighbor(ZH, ZG).
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What Logic is About

General Question:
» Given some knowledge about the world (a knowledge base)
» what can we derive from it?
» And on what basis may we argue?

~ logic

Goal: “mechanical” proofs
» formal “game with letters”

» detached from a concrete meaning
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Logic: Overview
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Task

Simplify this advice!

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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Propositional Logic

Propositional logic is a simple logic without numbers or objects.

Building blocks of propositional logic:
> propositions are statements that can be either true or false
» atomic propositions cannot be split into sub-propositions

> logical connectives connect propositions to form new ones

German: Aussagenlogik, Aussage, atomare Aussage, Junktoren
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Examples for Building Blocks

If | don't drink beer to a meal, then |
always eat fish. Whenever | have fish and
beer with the same meal, | abstain from
ice cream. When | eat ice cream or don't
drink beer, then | never touch fish.

» Every sentence is a proposition that consists of
sub-propositions (e. g., “eat ice cream or don't drink beer”).
» atomic propositions “drink beer”, “eat fish”, “eat ice cream”

> logical connectives “and”, “or”, negation, "“if, then”

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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Examples for Building Blocks

If | don't drink beer to a meal, then |
always eat fish. \Whenever | have fish and
beer with the same meal, | abstain from
ice cream. \When | eat ice cream or don't
drink beer, then | never touch fish.

» Every sentence is a proposition that consists of
sub-propositions (e. g., “eat ice cream or don't drink beer”).
» atomic propositions “drink beer”, “eat fish”, “eat ice cream”

> logical connectives “and”, “or”, negation, “if, then”

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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Problems with Natural Language

If | don't drink beer to a meal, then |
always eat fish.

Whenever | have fish and beer with the
same meal, | abstain from ice cream.
When | eat ice cream or don't drink
beer, then | never touch fish.

» “irrelevant” information

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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Problems with Natural Language

If | don't drink beer, then | eat fish.
Whenever | have fish and beer, | abstain
from ice cream.

When | eat ice cream or don't drink
beer, then | never touch fish.

> ‘“irrelevant” information
» different formulations for the same connective/proposition

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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Problems with Natural Language

If not DrinkBeer, then EatFish.
If EatFish and DrinkBeer,

then not EatlceCream.

If EatlceCream or not DrinkBeer,
then not EatFish.

> ‘“irrelevant” information
» different formulations for the same connective/proposition

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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What is Next?

» What are meaningful (well-defined) sequences of
atomic propositions and connectives?
“if then EatlceCream not or DrinkBeer and” not meaningful
— syntax
» What does it mean if we say that a statement is true?
Is “DrinkBeer and EatFish” true?
— semantics

» When does a statement logically follow from another?
Does “EatFish” follow from “if DrinkBeer, then EatFish”?
— logical entailment

German: Syntax, Semantik, logische Folgerung

Gabriele Roger (University of Basel) Theory of Computer Science February 25, 2019
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B1.2 Syntax
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Logic: Overview
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Syntax of Propositional Logic

Definition (Syntax of Propositional Logic)
Let A be a set of atomic propositions. The set of propositional
formulas (over A) is inductively defined as follows:

» Every atom a € A is a propositional formula over A.

> If ¢ is a propositional formula over A,
then so is its negation —p.

> If ¢ and ¢ are propositional formulas over A,
then so is the conjunction (¢ A 1)).

> If ¢ and ) are propositional formulas over A,
then so is the disjunction (¢ V ).

The implication (¢ — 1) is an abbreviation for (= V 1).

The biconditional (¢ <> 7)) is an abbrev. for ((¢p — ) A (¢ — ¢)).

German: atomare Aussage, aussagenlogische Formel, Atom, Negation,
Konjunktion, Disjunktion, Implikation, Bikonditional
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Syntax: Examples

Which of the following sequences of symbols are propositional
formulas over the set of all possible letter sequences?

» (AAN(BVQ))

((EatFish A DrinkBeer) — —EatlceCream)
—( A Rain V StreetWet)

—(Rain V StreetWet)

~(A=B)

(AA=(B<+)C)

(AV (B« Q)

(A<B)AC)

> (A1 AA2) V= (As < An))

v

v

v

v

v

v

v

Which kinds of formula are they (atom, conjunction, ...)?

Gabriele Roger (University of Basel) Theory of Computer Science February 25, 2019 20 / 48



B1. Propositional Logic | Semantics

B1.3 Semantics
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Logic: Overview

~| Syntax |

Properties |

Equivalences |

Normal Forms |

Predicate Logical
Logic Consequence
—| Inference |
—I Resolution |
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Meaning of Propositional Formulas?

So far propositional formulas are only symbol sequences
without any meaning.

For example, what does this mean:
((EatFish A DrinkBeer) — —EatlceCream)?

> We need semantics!
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Semantics of Propositional Logic

Definition (Semantics of Propositional Logic)
A truth assignment (or interpretation) for a set of atomic
propositions A is a function Z : A — {0, 1}.

A propositional formula ¢ (over A) holds under Z
(written as Z |= ) according to the following definition:

ITka iff Z(a)=1 (for a € A)
TE - iff notZ o
IE(eAY) iff TlkEpandZ =y
Th(pve) f ThporTku
Question: should we define semantics of (¢ — ) and (¢ <> ¥)?

German: Wahrheitsbelegung/Interpretation, ¢ gilt unter Z
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Semantics of Propositional Logic: Terminology

» For Z = ¢ we also say 7 is a model of ¢
and that ¢ is true under Z.

» If © does not hold under Z, we write this as Z t~ ¢
and say that Z is no model of ¢
and that ¢ is false under 7.

» Note: |= is not part of the formula
but part of the meta language (speaking about a formula).

German: Z ist ein/kein Modell von ; ¢ ist wahr/falsch unter Z; Metasprache

Gabriele Roger (University of Basel) Theory of Computer Science February 25, 2019
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Semantics: Example (1)

A = {DrinkBeer, EatFish, EatlceCream}
Z = {DrinkBeer — 1, EatFish — 0, EatlceCream — 1}
¢ = (—DrinkBeer — EatFish)

Do we have 7 |= ¢?
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Semantics: Example (2)
Goal: prove 7 = ¢.
Let us use the definitions we have seen:

7 = ¢ iff T |= (—DrinkBeer — EatFish)
iff Z = (——DrinkBeer Vv EatFish)
iff Z = =—DrinkBeer or Z |= EatFish
This means that if we want to prove Z |= ¢, it is sufficient to prove

7 |= ——DrinkBeer

or to prove
7 = EatFish.

We attempt to prove the first of these statements.

Gabriele Roger (University of Basel) Theory of Computer Science February 25, 2019
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Semantics: Example (3)

New goal: prove Z = ——DrinkBeer.

We again use the definitions:

Z = ——DrinkBeer iff not Z = —DrinkBeer
iff not not Z |= DrinkBeer
iff Z = DrinkBeer
iff Z(DrinkBeer) =1

The last statement is true for our interpretation Z.

To write this up as a proof of Z |= ¢,

we can go through this line of reasoning back-to-front,
starting from our assumptions and ending with the conclusion
we want to show.

Gabriele Roger (University of Basel) Theory of Computer Science February 25, 2019
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Semantics: Example (4)

Let Z = {DrinkBeer — 1, EatFish — 0, EatlceCream > 1}.
Proof that Z |= (—DrinkBeer — EatFish):
(1) We have Z = DrinkBeer
(uses defn. of = for atomic props. and fact Z(DrinkBeer) = 1).
(2) From (1), we get Z [~ —~DrinkBeer
(uses defn. of |= for negations).
(3) From (2), we get Z = ——DrinkBeer
(uses defn. of |= for negations).

(4) From (3), we get Z |= (——DrinkBeer V ) for all formulas v,
in particular Z |= (—=—DrinkBeer V EatFish)
(uses defn. of = for disjunctions).

(5) From (4), we get 7 |= (—DrinkBeer — EatFish)
(uses defn. of “—"). O
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B1.4 Properties of Propositional
Formulas
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Logic: Overview

~| Syntax |

—I Semantics |

~| Equivalences |

—| Normal Forms |

Predicate Logical
Logic Consequence
—| Inference |
—I Resolution |
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Properties of Propositional Formulas

A propositional formula ¢ is
» satisfiable if ¢ has at least one model
» unsatisfiable if ¢ is not satisfiable
» valid (or a tautology) if ¢ is true under every interpretation

> falsifiable if ¢ is no tautology

German: erfullbar, unerfillbar, gijltig/eine Tautologie, falsifizierbar

How can we show that a formula has one of these properties?

Gabriele Roger (University of Basel) Theory of Computer Science February 25, 2019
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Examples

» Show that (A A B) is satisfiable.
7 ={A+ 1,B+ 1} (+ simple proof that Z |= (A A B))

» Show that (A A B) is falsifiable.
Z={A+ 0,Br 1} (+ simple proof that Z }= (A A B))

» Show that (A A B) is not valid.
Follows directly from falsifiability.

» Show that (A A B) is not unsatisfiable.
Follows directly from satisfiability.

So far all proofs by specifying one interpretation.

How to prove that a given formula is valid/unsatisfiable/
not satisfiable/not falsifiable?

~~ must consider all possible interpretations

Gabriele Roger (University of Basel) Theory of Computer Science February 25, 2019 33 /48
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Truth Tables

Properties of Propositional Formulas

Evaluate for all possible interpretations
if they are models of the considered formula.

I(A) | T = -A
0 Yes
1 No
I(A) I(B) | Zl=(AAB) I(A) I(B)|ZE(AVB)

0 0 No 0 0 No
0 1 No 0 1 Yes
1 0 No 1 0 Yes
1 1 Yes 1 1 Yes

Gabriele Roger (University of Basel)

Theory of Computer Science

February 25, 2019
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Truth Tables in General

Similarly in the case where we consider a formula whose building
blocks are themselves arbitrary unspecified formulas:

Ike TEY|TE(pAY)

No No No
No Yes No
Yes No No
Yes Yes Yes

Gabriele Roger (University of Basel) Theory of Computer Science February 25, 2019 35 /48
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Truth Tables for Properties of Formulas

Is ¢ = ((A — B) vV (=B — A)) valid, unsatisfiable, ...?

I(A) IB)|ZE=-B IE(A—B) IE(-B—=A) Ikyp
0 0 Yes Yes No Yes
0 1 No Yes Yes Yes
1 0 Yes No Yes Yes
1 1 No Yes Yes Yes
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Connection Between Formula Properties and Truth Tables

A propositional formula ¢ is

» satisfiable if ¢ has at least one model
~> result in at least one row is “Yes"

» unsatisfiable if ¢ is not satisfiable
~~ result in all rows is “No”

» valid (or a tautology) if ¢ is true under every interpretation
~ result in all rows is “Yes"

» falsifiable if ¢ is no tautology
~~ result in at least one row is “No”
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Main Disadvantage of Truth Tables

How big is a truth table with n atomic propositions?

2 interpretations (rows)
4 interpretations (rows)
8 interpretations (rows)
777 interpretations

S WO N

Some examples: 210 = 1024, 220 = 1048576, 230 = 1073741824

~> not viable for larger formulas; we need a different solution
» more on difficulty of satisfiability etc.: Part E of this course

» practical algorithms: Foundations of Al course
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B1.5 Equivalences
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Logic: Overview

~| Syntax |

—I Semantics |

~| Properties |

—| Normal Forms |

Predicate Logical
Logic Consequence
—| Inference |

—I Resolution |
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Equivalent Formulas

Definition (Equivalence of Propositional Formulas)

Two propositional formulas ¢ and v over A are (logically)
equivalent (¢ = ) if for all interpretations Z for A
it is true that Z |= ¢ if and only if Z = 4.

German: logisch aquivalent

Gabriele Roger (University of Basel) Theory of Computer Science February 25, 2019
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Equivalent Formulas: Example

((pVY)VX)=(pV (¥ VX))

Equivalences

IE IE IE TE TE TE TE
e Y x | (eVY) @Vvx) (pVY)VX) (pV(¥VX)
No No No No No No No
No No  Yes No Yes Yes Yes
No Yes No Yes Yes Yes Yes
No Yes  Yes Yes Yes Yes Yes
Yes No No Yes No Yes Yes
Yes No Yes Yes Yes Yes Yes
Yes  Yes No Yes Yes Yes Yes
Yes Yes  Yes Yes Yes Yes Yes

Gabriele Roger (University of Basel)
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Some Equivalences (1)

(pry)=e

(pVe)=9p (idempotence)

(P AY)= (¥ Ae)

(V)= (V) (commutativity)
(b A)AX) = (P A (Y AX))
((eVY)VXx)=(pV (¥ VX)) (associativity)

German: Idempotenz, Kommutativitat, Assoziativitat
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Some Equivalences (2)

German: Absorption, Distributivitat

Gabriele Roger (University of Basel) Theory of Computer Science

(A (V)=
(eV(pAY))=e
(AW VX)) =(pA)V(pAX))
(eV@AX)=(eVi)A(eVX))

(absorption)

(distributivity)

February 25, 2019

Equivalences
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Some Equivalences (3)

- =@ (Double negation)
(e AY) = (mp V)
(e V)= (—p A1) (De Morgan's rules)
(¢ V1) = ¢ if ¢ tautology
(o A1) =9 if ¢ tautology (tautology rules)
(¢ V ¢) =9 if  unsatisfiable
(@ A1) = ¢ if ¢ unsatisfiable (unsatisfiability rules)

German: Doppelnegation, De Morgansche Regeln, Tautologieregeln,
Unerfiillbarkeitsregeln

Gabriele Roger (University of Basel) Theory of Computer Science February 25, 2019
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Substitution Theorem

Equivalences

Theorem (Substitution Theorem)

Let v and ¢’ be equivalent propositional formulas over A.
Let 1) be a propositional formula with (at least)
one occurrence of the subformula .

Then ) is equivalent to 1’, where 1)’ is constructed from 1)
by replacing an occurrence of © in 1) with .

German: Ersetzbarkeitstheorem

(without proof)

Gabriele Roger (University of Basel) Theory of Computer Science February 25, 2019 46 / 48



B1. Propositional Logic | Equivalences

Application of Equivalences: Example

(PA(-QVP)=((PA=Q)V (PAP))  (distributivity)
=((PA-Q)VP) (idempotence)
=(PV(PA-Q)) (commutativity)
=P (absorption)
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Summary

» propositional logic based on atomic propositions

» syntax defines what well-formed formulas are

» semantics defines when a formula is true

> interpretations are the basis of semantics

» satisfiability and validity are important properties of formulas
> truth tables systematically consider all possible interpretations
» truth tables are only useful for small formulas

> Logical equivalence describes when formulas are
semantically indistinguishable.

» Equivalence rewriting is used to simplify formulas
and to bring them in normal forms (next lecture).
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