
Theorie der Informatik

G. Röger
Frühjahrssemester 2019

Universität Basel
Fachbereich Informatik

Übungsblatt 12 — Lösungen

Aufgabe 12.1 (LOOP-Programme, 1 Punkt)

Welche Funktion berechnet folgendes Programm?

LOOP x1 DO
x1 := x1 + 1

END;
LOOP x1 DO
x1 := x1 + 1

END;
x0 := x1

Lösung:

f(x) = 4x

Aufgabe 12.2 (LOOP-Berechenbarkeit, 0.5 Punkte)

Betrachten Sie folgende Funktion g, die eine modifizierte Modulooperation berechnet:

g(x, y) =

{
x mod y, falls y > 0

undefiniert, sonst

Ist g LOOP-berechenbar?

Lösung:

Nein, da nur totale Funktionen LOOP-berechenbar sein können.

Aufgabe 12.3 (Alternative Definition von LOOP-Programmen, 2 Punkte)

Zeigen Sie, dass wir mit der folgenden Definition von LOOP’-Programmen genau die gleichen
Funktionen berechnen können wir mit der Definition von LOOP-Programmen aus der Vorlesung:

LOOP’-Programme sind induktiv wie folgt definiert:

• xi := xj ist ein LOOP’-Programm für alle i, j ∈ N0 (Zuweisung)

• xi := xi + 1 ist ein LOOP’-Programm für alle i ∈ N0 (Inkrementierung)

• xi := xi − 1 ist ein LOOP’-Programm für alle i ∈ N0 (Modifizierte Dekrementierung)

• Sind P1 und P2 LOOP’-Programme, dann auch P1;P2 (Komposition)

• Ist P ein LOOP’-Program, dann auch
LOOP xi DO P END
für alle i ∈ N0 (LOOP-Schleife)

Lösung:

Komposition und LOOP-Schleifen gibt es in beiden Definitionen, es reicht also, wenn wir zeigen,
wie man Zuweisung, Inkrementierung und modifizierte Dekrementierung mit LOOP-Programmen
(wie in der Vorlesung definiert) simulieren können und dass wir Addition und modifizierte Sub-
traktion mit LOOP’-Programmen simulieren können.

1



Wir haben in der Vorlesung die Zuweisung bereits als syntaktischen Zucker für LOOP-Programme
eingeführt. Inkrementierung und Dekrementierung können mit Addition und modifizierter Sub-
traktion simuliert werden, indem man i = j und c = 1 setzt.
Für die umgekehrte Richtung können wir einen LOOP-Programmausdruck xi := xj + c mit dem
folgenden LOOP’-Programm simulieren:

xi := xj ;
xi := xi + 1;
... (insgesamt c mal)
xi := xi + 1;

Analog können wir c Dekrementierungsoperationen für die modifizierte Subtraktion xi := xj − c
verwenden.

Aufgabe 12.4 (Syntaktischer Zucker, 1.5 + 1.5 + 1.5 Punkte)

Geben Sie an, wie sich die folgenden syntaktischen Konstrukte für LOOP-Programme (mit der
offensichtlichen Semantik) durch bekannte Konstrukte simulieren lassen. Sie dürfen dabei neben
den Grundkonstrukten von LOOP-Programmen auch die zusätzlichen Konstrukte verwenden, die
in Kapitel F1 eingeführt wurden.

(a) IF xi > c THEN P ELSE P ′ END

Lösung:

xk := xi − c;
IF xk 6= 0 THEN
P

END;
IF xk = 0 THEN
P ′

END

Wobei xk eine frische Variable ist.

(b) IF xi = xj THEN P END

Lösung:

xk := xi − xj ;
xl := xj − xi;
xm := xk + xl;
IF xm = 0 THEN
P

END

Wobei xk, xl und xm frische Variablen sind.

(c) FOR xi = 1 TO c DO P END

Lösung:

xk := c;
xi := 0;
LOOP xk DO
xi := xi + 1;
P

END

Wobei xk eine frische Variable ist.

2



Aufgabe 12.5 (2 Punkte)

Geben sie ein LOOP-Programm an, welches die Potenzfunktion f(x, y) = xy berechnet. Sie dürfen
allen syntaktischen Zucker aus der Vorlesung verwenden.

Lösung:

x0 := 1;
LOOP x2 DO
x3 := 0;
LOOP x1 DO
x3 := x3 + x0

END;
x0 := x3

END

3


