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Ubungsblatt 11 — Losungen

Aufgabe 11.1 (Polynomielle Reduktion, 2.5 4+ 0.5 Punkte)
Betrachten Sie das Entscheidungsproblem 3COLORING:

e (Gegeben: ungerichteter Graph G = (V, E)
e Gefragt: Gibt es eine totale Funktion f: V — {r,g,b} mit f(v) # f(w) fiir alle {v,w} € E?
sowie das Entscheidungsproblem 3SAT:

e Gegeben: Eine aussagenlogische Formel ¢ in konjunktiver Normalform mit der Einschrinkung,
dass jede Klausel aus héchstens 3 Literalen besteht

o Gefragt: Ist p erfiillbar?

(a) Zeigen Sie, dass 3COLORING <, 3SAT gilt.
Loésung:

Wir benétigen eine totale und polynomiell berechenbare Funktion f, welche ein beliebiges
3COLORING Problem in ein 3SAT Problem “umwandelt”. Dafiir fithren wir fiir jede Kom-
bination aus Knoten v; € V und Farbe ¢ € {r, g, b} eine Variable v, . ein.

Um eine giiltige Losung fiir 3COLORING zu sein muss die Formel zwei Dinge sicherstellen:

(1) Keine zwei benachbarte Knoten haben dieselbe Farbe:

(i V wj0) A (75,9 V 205,6) A (205 V -0 p) fiir alle {v;,v;} € E
(2) Jeder Knoten hat genau eine Farbe:

(a) vir Vg Vuyy fir alle v; € V

(b) (i, V205 g) A (030 V 205 5) A (05,4 V ;) fiir alle v; € V

Dies fiihrt zu folgender Funktion:

FAVE) A g0 = N\ (5vir Vi) A (S V wj.6) A (<0 V 050)
{viv;}€E

AN Wir V0ig Vi) A (700 Vw3.) A (030 V =035) A (2019 V ;)
v, €V

Die Funktion ist total (der Randfall in dem der Graph leer ist, ist abgedeckt durch die
Konvention, dass eine leere Menge Klauseln dquivalent zu T ist) und polynomiell berechenbar
(es gibt 4 Klauseln je Knoten und 3 Klauseln je Kante).

Zum Beweis, dass © € 3COLORING gdw. f(x) € 3SAT:

(=) Sei z € 3COLORING. Dann kann man die Losung von z als Interpretation von ¢ mo-
dellieren, in dem man fiir alle Knoten die Variable v; ., auf wahr setzt, wobei ¢ die Farbe aus
der Losung ist, und v; o fiir die anderen beiden Farben auf falsch. Damit sind alle Klauseln
aus (2) erfiillt. Da wir eine Losung modellieren, miissen auch alle Klauseln aus (1) erfiillt
sein, da diese Klauseln nur verletzt werden, falls zwei benachbarte Knoten die gleiche Farbe
haben.

(<) Analog.



(b) Was kénnen wir aus (a) und der NP-Vollstéindigkeit von 3SAT fiir 3COLORING schliessen?
Loésung:

Wir konnen lediglich folgern, dass 3COLORING in NP liegt (es ist ,,héchstens® so schwer, wie
3SAT).

Aufgabe 11.2 (NP-Vollstéindigkeit, 242 Punkte)
Betrachten Sie das Entscheidungsproblem HITTINGSET:

e Gegeben: Eine endliche Menge T, eine Menge von Mengen S = {S1,...,S,} mit S; C T fiir
alle i € {1,...,n}, eine natiirliche Zahl K € Ny mit K < |T|.

e Gefragt: Gibt es eine Menge H mit hochstens K Elementen, die mindestens ein Element aus
jeder Menge aus S enthélt?

(a) Zeigen Sie, dass HITTINGSET in NP liegt, indem Sie einen nicht-deterministischen Algo-
rithmus fiir HITTINGSET angeben, dessen Laufzeit durch ein Polynom in n|T| beschrinkt
ist.

Loésung:

Der folgende Algorithmus 16st HITTINGSET auf der Eingabe (T, S):

H=0
FOR z € T DO
GUESS take € {0,1}
IF take = 1 THEN
H:=HU{z}
END
END
IF |H| > K THEN
REJECT
END
FOR S; € S DO
I =5nNH
IF I = () THEN
REJECT
END
END
ACCEPT

Der obere Teil kann jede beliebige Teilmenge von Elementen H C T raten. Der untere Teil
verifiziert dann, dass es sich bei der geratenen Menge um ein hitting set handelt. Wenn es
ein hitting set der Grosse K gibt, kann dieses im oberen Teil geraten werden. Die geratene
Menge iibersteht dann alle Tests und wird akzeptiert. Wenn es kein hitting set der Grosse
K gibt, fiihrt jede Wahl von H zu einem REJECT, entweder, weil H mehr als K Elemente
hat, oder weil mindestens eine der Mengen S; nicht abgedeckt wird.

Jeder Schleifendurchlauf der ersten FOR-Schleife kann in konstanter Zeit implementiert wer-
den, so dass die erste FOR-Schleife insgesamt Zeit O(|T|) benétigt.

Der Test |H| > K ist in konstanter Zeit moglich.



Die Berechnung von I kann auf naive Weise in Zeit O(|S;| - |H|) = O(|S:| - |T|) = O(|T)?)
erfolgen (mit geeigneten Datenstrukturen geht es schuneller, aber fiir die Aufgabe ist das
egal). Die Schleife iteriert iiber alle S; € S, also n mal.

Die gesamte Laufzeit ist damit O(n|T'|?) also polynomiell in der Grosse der Eingabe.

(b) Beweisen Sie, dass HITTINGSET NP-vollstéindig ist. Sie diirfen dabei ohne Beweis verwenden,
dass das Problem VERTEXCOVER (aus Kapitel E4) NP-vollstidndig ist.

Losung:

Um zu zeigen, dass HITTINGSET NP-vollstdndig ist, miissen wir zeigen, dass HITTINGSET
NP-hart ist und in NP liegt. Fiir den ersten Teil reduzieren wir VERTEXCOVER auf HIT-
TINGSET; den zweiten Teil haben wir schon in Teilaufgabe (a) gezeigt.

Idee: Wir verwenden fiir die Grundmenge 7' der HITTINGSET-Instanz die Menge von Knoten
V aus G und fir die Menge von Mengen S verwenden wir die Menge der Kanten (die ja
in ungerichteten Graphen jeweils als Menge von zwei Knoten représentiert werden). Jedes
hitting set entspricht dann eineindeutig einem vertex cover der gleichen Grosse.

Formal:

fUV,E), K)) = (V. E, K)
Die Funktion f ist total und in polynomieller Zeit berechenbar (abgesehen von der Umstruk-
turierung der Daten handelt es sich um die Identitétsfunktion).

C ist eine Losung fiir die VERTEXCOVER-Instanz genau dann, wenn C' C V, |C| < K, und
{u,v} N C # B fiir alle {u,v} € E. Genau in diesen Féllen ist C' auch eine Losung fiir die
HITTINGSET-Instanz (V, E, K).

Aufgabe 11.3 (NP-Hirte, 3 Punkte)

Betrachten Sie die folgenden Entscheidungsprobleme:

INDSET:
e Gegeben: ungerichteter Graph G = (V, E), Zahl k € Ny

e (Gefragt: Enthélt G eine unabhéngige Menge der Grosse k& oder mehr,
d.h. eine Knotenmenge I C V mit |I| > k und {u,v} ¢ E fiir alle u,v € I?

SETPACKING:

e Gegeben: endliche Menge M, Menge S = {S1,...,S,} mit S; C M fiir alle i € {1,...,n},
Zahl k € N

o Gefragt: Gibt es &' C S mit |S'| > k, so dass alle Mengen in &’ paarweise disjunkt sind, d.h.
fiir alle Sz‘, Sj € S8’ mit S; 7é Sj gllt SN Sj =7

Beweisen Sie, dass SETPACKING NP-hart ist. Sie diirfen dabei verwenden, dass das Problem IND-
SET NP-vollstiandig ist.

Loésung:

Wir miissen zeigen, dass INDSET <, SETPACKING.

Hierzu definieren wir f((V, E), k) = (FUV,S,k) mit S = {S, |v € V}, wobei S, ={e€ E |v €
e} U{v}. Die Funktion f lésst sich offensichtlich in polynomieller Zeit berechnen.

Wir miissen noch zeigen: (V, E) enthélt eine unabhiingige Menge der Grésse > k genau dann,
wenn S mindestens k paarweise disjunkte Mengen enthélt:



e Fiir eine unabhéingige Menge I C V gilt fiir alle u,v € I, dass {u,v} ¢ E. Betrachte die
Menge S = {S, | v € I}. Da jedes v € V nur genau in der Menge S, vorkommt, besteht S}
aus |I| unterschiedlichen Mengen. Wir zeigen durch Widerspruch, dass diese zudem paarweise
verschieden sind:

Angenommen, es gibt S, S, € S; mit S, # S, und es existiert e € S, N S,. Es gilt e € E
(und damit |e|] = 2), da jedes w € V nur in einer Menge vorkommt. Wegen e € S, gilt
u € e und wegen e € S, gilt v € e. Daraus folgt, dass {u,v} € E. ~» Widerspruch zu [
unabhingige Menge.

e Sei &’ C S eine Menge paarweise disjunkter Mengen. Dann gilt fiir alle S,,S, € S’ mit
Sy # Sy (und damit u # v), dass es kein e gibt mit v € e und v € e, und somit {u,v} ¢ E.
Daher ist {v | S, € 8’} eine unabhingige Menge der Grosse |S’| in (V) E).

Insgesamt hat f also die geforderten Eigenschaften einer polynomiellen Reduktion.



