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Übungsblatt 11 — Lösungen

Aufgabe 11.1 (Polynomielle Reduktion, 2.5 + 0.5 Punkte)

Betrachten Sie das Entscheidungsproblem 3Coloring:

• Gegeben: ungerichteter Graph G = 〈V,E〉

• Gefragt: Gibt es eine totale Funktion f : V → {r, g, b} mit f(v) 6= f(w) für alle {v, w} ∈ E?

sowie das Entscheidungsproblem 3SAT:

• Gegeben: Eine aussagenlogische Formel ϕ in konjunktiver Normalform mit der Einschränkung,
dass jede Klausel aus höchstens 3 Literalen besteht

• Gefragt: Ist ϕ erfüllbar?

(a) Zeigen Sie, dass 3Coloring ≤p 3SAT gilt.

Lösung:

Wir benötigen eine totale und polynomiell berechenbare Funktion f , welche ein beliebiges
3Coloring Problem in ein 3SAT Problem “umwandelt”. Dafür führen wir für jede Kom-
bination aus Knoten vi ∈ V und Farbe c ∈ {r, g, b} eine Variable vi,c ein.

Um eine gültige Lösung für 3Coloring zu sein muss die Formel zwei Dinge sicherstellen:

(1) Keine zwei benachbarte Knoten haben dieselbe Farbe:
(¬vi,r ∨ ¬vj,r) ∧ (¬vi,g ∨ ¬vj,g) ∧ (¬vi,b ∨ ¬vj,b) für alle {vi, vj} ∈ E

(2) Jeder Knoten hat genau eine Farbe:
(a) vi,r ∨ vi,g ∨ vi,b für alle vi ∈ V
(b) (¬vi,r ∨ ¬vi,g) ∧ (¬vi,r ∨ ¬vi,b) ∧ (¬vi,g ∨ ¬vi,b) für alle vi ∈ V

Dies führt zu folgender Funktion:

f : 〈〈V,E〉, {r, g, b}〉 →
∧

{vi,vj}∈E

(¬vi,r ∨ ¬vj,r) ∧ (¬vi,g ∨ ¬vj,g) ∧ (¬vi,b ∨ ¬vj,b)

∧
∧

vi∈V

(vi,r ∨ vi,g ∨ vi,b) ∧ (¬vi,r ∨ ¬vi,g) ∧ (¬vi,r ∨ ¬vi,b) ∧ (¬vi,g ∨ ¬vi,b)

Die Funktion ist total (der Randfall in dem der Graph leer ist, ist abgedeckt durch die
Konvention, dass eine leere Menge Klauseln äquivalent zu> ist) und polynomiell berechenbar
(es gibt 4 Klauseln je Knoten und 3 Klauseln je Kante).

Zum Beweis, dass x ∈ 3Coloring gdw. f(x) ∈ 3SAT:

(⇒) Sei x ∈ 3Coloring. Dann kann man die Lösung von x als Interpretation von ϕ mo-
dellieren, in dem man für alle Knoten die Variable vi,c auf wahr setzt, wobei c die Farbe aus
der Lösung ist, und vi,c′ für die anderen beiden Farben auf falsch. Damit sind alle Klauseln
aus (2) erfüllt. Da wir eine Lösung modellieren, müssen auch alle Klauseln aus (1) erfüllt
sein, da diese Klauseln nur verletzt werden, falls zwei benachbarte Knoten die gleiche Farbe
haben.

(⇐) Analog.
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(b) Was können wir aus (a) und der NP-Vollständigkeit von 3SAT für 3Coloring schliessen?

Lösung:

Wir können lediglich folgern, dass 3Coloring in NP liegt (es ist
”
höchstens“ so schwer, wie

3SAT).

Aufgabe 11.2 (NP-Vollständigkeit, 2+2 Punkte)

Betrachten Sie das Entscheidungsproblem HittingSet:

• Gegeben: Eine endliche Menge T , eine Menge von Mengen S = {S1, . . . , Sn} mit Si ⊆ T für
alle i ∈ {1, . . . , n}, eine natürliche Zahl K ∈ N0 mit K ≤ |T |.

• Gefragt: Gibt es eine Menge H mit höchstens K Elementen, die mindestens ein Element aus
jeder Menge aus S enthält?

(a) Zeigen Sie, dass HittingSet in NP liegt, indem Sie einen nicht-deterministischen Algo-
rithmus für HittingSet angeben, dessen Laufzeit durch ein Polynom in n|T | beschränkt
ist.

Lösung:

Der folgende Algorithmus löst HittingSet auf der Eingabe 〈T, S〉:

H = ∅
FOR x ∈ T DO

GUESS take ∈ {0, 1}
IF take = 1 THEN

H := H ∪ {x}
END

END

IF |H| > K THEN

REJECT

END

FOR Si ∈ S DO

I := Si ∩H

IF I = ∅ THEN

REJECT

END

END

ACCEPT

Der obere Teil kann jede beliebige Teilmenge von Elementen H ⊆ T raten. Der untere Teil
verifiziert dann, dass es sich bei der geratenen Menge um ein hitting set handelt. Wenn es
ein hitting set der Grösse K gibt, kann dieses im oberen Teil geraten werden. Die geratene
Menge übersteht dann alle Tests und wird akzeptiert. Wenn es kein hitting set der Grösse
K gibt, führt jede Wahl von H zu einem REJECT, entweder, weil H mehr als K Elemente
hat, oder weil mindestens eine der Mengen Si nicht abgedeckt wird.

Jeder Schleifendurchlauf der ersten FOR-Schleife kann in konstanter Zeit implementiert wer-
den, so dass die erste FOR-Schleife insgesamt Zeit O(|T |) benötigt.

Der Test |H| > K ist in konstanter Zeit möglich.
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Die Berechnung von I kann auf naive Weise in Zeit O(|Si| · |H|) = O(|Si| · |T |) = O(|T |2)
erfolgen (mit geeigneten Datenstrukturen geht es schneller, aber für die Aufgabe ist das
egal). Die Schleife iteriert über alle Si ∈ S, also n mal.

Die gesamte Laufzeit ist damit O(n|T |2) also polynomiell in der Grösse der Eingabe.

(b) Beweisen Sie, dass HittingSet NP-vollständig ist. Sie dürfen dabei ohne Beweis verwenden,
dass das Problem VertexCover (aus Kapitel E4) NP-vollständig ist.

Lösung:

Um zu zeigen, dass HittingSet NP-vollständig ist, müssen wir zeigen, dass HittingSet
NP-hart ist und in NP liegt. Für den ersten Teil reduzieren wir VertexCover auf Hit-
tingSet; den zweiten Teil haben wir schon in Teilaufgabe (a) gezeigt.

Idee: Wir verwenden für die Grundmenge T der HittingSet-Instanz die Menge von Knoten
V aus G und für die Menge von Mengen S verwenden wir die Menge der Kanten (die ja
in ungerichteten Graphen jeweils als Menge von zwei Knoten repräsentiert werden). Jedes
hitting set entspricht dann eineindeutig einem vertex cover der gleichen Grösse.

Formal:
f(〈〈V,E〉,K〉) = 〈V,E,K〉

Die Funktion f ist total und in polynomieller Zeit berechenbar (abgesehen von der Umstruk-
turierung der Daten handelt es sich um die Identitätsfunktion).

C ist eine Lösung für die VertexCover-Instanz genau dann, wenn C ⊆ V , |C| ≤ K, und
{u, v} ∩ C 6= ∅ für alle {u, v} ∈ E. Genau in diesen Fällen ist C auch eine Lösung für die
HittingSet-Instanz 〈V,E,K〉.

Aufgabe 11.3 (NP-Härte, 3 Punkte)

Betrachten Sie die folgenden Entscheidungsprobleme:

IndSet:

• Gegeben: ungerichteter Graph G = 〈V,E〉, Zahl k ∈ N0

• Gefragt: Enthält G eine unabhängige Menge der Grösse k oder mehr,
d.h. eine Knotenmenge I ⊆ V mit |I| ≥ k und {u, v} 6∈ E für alle u, v ∈ I?

SetPacking:

• Gegeben: endliche Menge M , Menge S = {S1, . . . , Sn} mit Si ⊆ M für alle i ∈ {1, . . . , n},
Zahl k ∈ N0

• Gefragt: Gibt es S ′ ⊆ S mit |S ′| ≥ k, so dass alle Mengen in S ′ paarweise disjunkt sind, d.h.
für alle Si, Sj ∈ S ′ mit Si 6= Sj gilt Si ∩ Sj = ∅?

Beweisen Sie, dass SetPacking NP-hart ist. Sie dürfen dabei verwenden, dass das Problem Ind-
Set NP-vollständig ist.

Lösung:

Wir müssen zeigen, dass IndSet ≤p SetPacking.
Hierzu definieren wir f(〈V,E〉, k) = 〈E ∪ V,S, k〉 mit S = {Sv | v ∈ V }, wobei Sv = {e ∈ E | v ∈
e} ∪ {v}. Die Funktion f lässt sich offensichtlich in polynomieller Zeit berechnen.
Wir müssen noch zeigen: 〈V,E〉 enthält eine unabhängige Menge der Grösse ≥ k genau dann,
wenn S mindestens k paarweise disjunkte Mengen enthält:
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• Für eine unabhängige Menge I ⊆ V gilt für alle u, v ∈ I, dass {u, v} 6∈ E. Betrachte die
Menge S ′I = {Su | u ∈ I}. Da jedes v ∈ V nur genau in der Menge Sv vorkommt, besteht S ′I
aus |I| unterschiedlichen Mengen. Wir zeigen durch Widerspruch, dass diese zudem paarweise
verschieden sind:

Angenommen, es gibt Su, Sv ∈ S ′I mit Su 6= Sv und es existiert e ∈ Su ∩ Sv. Es gilt e ∈ E
(und damit |e| = 2), da jedes w ∈ V nur in einer Menge vorkommt. Wegen e ∈ Su gilt
u ∈ e und wegen e ∈ Sv gilt v ∈ e. Daraus folgt, dass {u, v} ∈ E.  Widerspruch zu I
unabhängige Menge.

• Sei S ′ ⊆ S eine Menge paarweise disjunkter Mengen. Dann gilt für alle Su, Sv ∈ S ′ mit
Su 6= Sv (und damit u 6= v), dass es kein e gibt mit u ∈ e und v ∈ e, und somit {u, v} 6∈ E.
Daher ist {v | Sv ∈ S ′} eine unabhängige Menge der Grösse |S ′| in 〈V,E〉.

Insgesamt hat f also die geforderten Eigenschaften einer polynomiellen Reduktion.
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