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Exercise 11.1 (Polynomial Reductions, 2.5 + 0.5 marks)

Consider the decision problem 3Coloring:

• Given: undirected graph G = 〈V,E〉

• Question: Is there a total function f : V → {r, g, b} such that f(v) 6= f(w) for all {v, w} ∈ E?

and the decision problem 3SAT:

• Given: a propositional formula ϕ in conjunctive normal form with at most 3 literals per
clause

• Question: is ϕ satisfiable?

(a) Show that 3Coloring ≤p 3SAT.

Solution:

We require a total and polynomial computable function f , which maps an arbitrary 3Col-
oring problem to a 3SAT problem. We introduce a variable vi,c for each vertex vi ∈ V and
color c ∈ {r, g, b}.
A valid solution for 3Coloring must have the following properties:

(1) No two neighboring vertices share their color:
(¬vi,r ∨ ¬vj,r) ∧ (¬vi,g ∨ ¬vj,g) ∧ (¬vi,b ∨ ¬vj,b) for all {vi, vj} ∈ E

(2) Each vertex has exactly one color:
(a) vi,r ∨ vi,g ∨ vi,b for all vi ∈ V
(b) (¬vi,r ∨ ¬vi,g) ∧ (¬vi,r ∨ ¬vi,b) ∧ (¬vi,g ∨ ¬vi,b) for all vi ∈ V

The function is total (the special case for the empty graph is covered by the convention that
an empty set of clauses is equivalent to >) and polynomially computable (there are 4 clauses
per vertex and 3 clauses per edge).

To show that x ∈ 3Coloring iff f(x) ∈ 3SAT:

(⇒): Let x ∈ 3Coloring. Then, we can model the solution of x as interpretation of ϕ by
setting all variables vi,c to true iff c is the color of vi in the solution, and to false otherwise.
This way all clauses from (2) hold. All clauses from (1) hold, as we model a solution to x.

(⇐): Analogously.

(b) What can we say about 3Coloring, knowing that 3SAT is NP-complete?

Solution:

We can only conclude that 3Coloring is in NP (it is no harder that 3SAT, and it may be
simpler).

Exercise 11.2 (NP-completeness, 2+2 marks)

Consider the decision problem HittingSet:
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• Given: A finite set T , a set of sets S = {S1, . . . , Sn} with Si ⊆ T for all i ∈ {1, . . . , n}, a
natural number K ∈ N0 with K ≤ |T |.

• Question: Is there a set H with at most K elements that contains at least one element from
each set in S?

(a) Prove that HittingSet is in NP by specifying a non-deterministic algorithm for Hit-
tingSet whose runtime is limited by a polynomial in n|T |.

Solution:

The following algorithm solves HittingSet on the input 〈T, S〉:

H = ∅
FOR x ∈ T DO

GUESS take ∈ {0, 1}
IF take = 1 THEN

H := H ∪ {x}
END

END

IF |H| > K THEN

REJECT

END

FOR Si ∈ S DO

I := Si ∩H

IF I = ∅ THEN

REJECT

END

END

ACCEPT

The first part can guess every subset of elements H ⊆ T . The second part then verifies that
the guessed subset is a hitting set. If there is a hitting set of size K then it can be guessed
in the first part. The guessed set then passes all tests and will be accepted. If there is no
hitting set of size K, every choice of H leads to a REJECT, either because H has more than
K elements or because at least one of the sets Si is not covered.

Every iteration of the first FOR-loop can be done in constant time, so the first FOR-loop
requires time O(|T |) in total.

The test |H| > K is possible in constant time.

The computation of I can naively be done in time O(|Si| · |H|) = O(|Si| · |T |) = O(|T |2)
(with suitable data structures it is possible to do it faster, but this is not necessary for this
exercise). The loop iterates over all Si ∈ S, i.e., n times.

In total the algorithm runs in time O(n|T |2), i.e., in polynomial time with respect to the
input size.

(b) Prove that HittingSet is NP-complete. You may use without proof that the problem
VertexCover (from chapter E5) is NP-complete.

Solution:
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To show that HittingSet is NP-complete, we have to show that HittingSet is NP-hard
and in NP. For the first part, we reduce VertexCover to HittingSet; we already showed
the second part in exercise (a).

Idea: We use the set of nodes V from G as the universe T of the HittingSet instance and
the set of edges E as teh set of sets S (each edge is represented as a sets of two nodes in
undirected graphs). Every hitting set then uniquely corresponds to a vertex cover of the
same size.

Formally:
f(〈〈V,E〉,K〉) = 〈V,E,K〉

The function f is total and computable in polynomial time (other than the restructuring of
the data, this is the identity function).

C is a solution for the VertexCover instance if and only if C ⊆ V , |C| ≤ K, and {u, v} ∩
C 6= ∅ for all {u, v} ∈ E. In exactly these cases, C also is a solution for the HittingSet
instance 〈V,E,K〉.

Exercise 11.3 (NP-hardness, 3 marks)

Consider the following decision problems:

IndSet:

• Given: Undirected graph G = 〈V,E〉, number k ∈ N0

• Question: Does G contain an independent set of size k or larger,
i.e., is there a set I ⊆ V with |I| ≥ k and {u, v} 6∈ E for all u, v ∈ I?

SetPacking:

• Given: Finite set M , set S = {S1, . . . , Sn} with Si ⊆ M for all i ∈ {1, . . . , n}, number
k ∈ N0

• Question: Is there a set S ′ ⊆ S with |S ′| ≥ k, such that all sets in S ′ are pairwise disjoint,
i.e., for all Si, Sj ∈ S ′ with Si 6= Sj it holds that Si ∩ Sj = ∅?

Prove that SetPacking is NP-hard. You may use that the problem IndSet is NP-complete.

Solution:

Wir müssen zeigen, dass IndSet ≤p SetPacking.
Hierzu definieren wir f(〈V,E〉, k) = 〈E ∪ V,S, k〉 mit S = {Sv | v ∈ V }, wobei Sv = {e ∈ E | v ∈
e} ∪ {v}. Die Funktion f lässt sich offensichtlich in polynomieller Zeit berechnen.
Wir müssen noch zeigen: 〈V,E〉 enthält eine unabhängige Menge der Grösse ≥ k genau dann,
wenn S mindestens k paarweise disjunkte Mengen enthält:

• Für eine unabhängige Menge I ⊆ V gilt für alle u, v ∈ I, dass {u, v} 6∈ E. Betrachte die
Menge S ′I = {Su | u ∈ I}. Da jedes v ∈ V nur genau in der Menge Sv vorkommt, besteht
S ′I aus |I| unterschiedlichen Mengen. Wir zeigen durch Widerspruch, dass diese zudem
paarweise verschieden sind:

Angenommen, es gibt Su, Sv ∈ S ′I mit Su 6= Sv und es existiert e ∈ Su ∩ Sv. Es gilt e ∈ E
(und damit |e| = 2), da jedes w ∈ V nur in einer Menge vorkommt. Wegen e ∈ Su gilt
u ∈ e und wegen e ∈ Sv gilt v ∈ e. Daraus folgt, dass {u, v} ∈ E.  Widerspruch zu I
unabhängige Menge.

• Sei S ′ ⊆ S eine Menge paarweise disjunkter Mengen. Dann gilt für alle Su, Sv ∈ S ′ mit
Su 6= Sv (und damit u 6= v), dass es kein e gibt mit u ∈ e und v ∈ e, und somit {u, v} 6∈ E.
Daher ist {v | Sv ∈ S ′} eine unabhängige Menge der Grösse |S ′| in 〈V,E〉.

Insgesamt hat f also die geforderten Eigenschaften einer polynomiellen Reduktion.

3


