Theory of Computer Science

G. Roger University of Basel
Spring Term 2019 Computer Science

Exercise Sheet 7 — Solutions

Exercise 7.1 (Composition of computable functions is computable; 2 points)

Let f:¥* = ¥* and g : ¥* — X* be Turing-computable partial functions for an alphabet X.
Show that the composition (f o g): ¥* — ¥* is also Turing-computable.

In general the composition of two functions is defined as (f o g)(z) = f(g(x)). Specifically, the
value (f o g)(x) is undefined if g(z) is undefined.

Solution:

General Ideas:

If f and g are Turing-computable, then there exist DTMs M; and M, which compute f(y) given
input y, respectively g(z) given input x.

If we start the DTM M, on an input x where g(z) is defined, then after termination the tape content
and the reading head are exactly in the configuration needed for the input for M (according to
the definition of functions computed by a DTM). Thus it is in this case sufficient to combine M
and M, to a new DTM by changing all transitions of M, which lead to an end state to the start
state of My. Thus the DTM first computes g(z) given input x. This is then the input y for f,
which means the DTM computes f(y) = f(g(z)) = (f o g)(z).

Technical Details:

We assume without restriction that the sets of states of My and M, are disjoint (if not, we can
rename states as needed) and that the tape alphabets are identical otherwise we can unite the
two tape alphabets and arbitrarily choose all new transitions which need to be defined now (for
example when M, reads a symbol only occurring in the tape alphabet of My). We can do this
arbitrarily because these transitions will never be used.

One technical problem arises though if M, terminates in a configuration that does not represent
a valid computation (if the head is on a wrong position or illegal symbols are on the tape). In
this case the machine should not return a valid result, since (f o g)(x) is undefined, but we cannot
guarantee this without further demands to M.

The easiest way to remove this problem is to modify M, in a way to ensure that it cannot stop
in an invalid configuration. For example we could check at the end of the computation of M, if
the tape content has a correct form. One difficulty we have to deal with is to recognize where the
visited part of the tape starts and ends. The easiest way to solve this is to never use (1 during the
calculation of M, but instead write a new symbol (J which behaves exactly as [J. Thus we ensure
that when checking the result of the computation [J marks both ends of the visited tape. During
the final check we then replace [J with O.

Exercise 7.2 (Enumerable Functions; 1.54+1.5 Points)

Let ¥ = {a,b, c}. Specify total and computable functions f : Ny — ¥* which recursively enumer-
ate the following languages.

(a) L1 ={a"v¥ | z,y € Ng}

(b) Ly = LaULp where Ly and Lp are languages over ¥ that are recursively enumerated by
the functions f4 and fg.

Solution:
(3«) fr. (n) — gdecoder (n)pdecodes (n)

{fA(g) if n is even

fB(%5L) otherwise

(b) fr,(n) =




Exercise 7.3 (Decidability and Semi-Decidability; 0.5+0.5+14+1+1 Points)

Which of the following statements are true, which are false? In each case, specify a short proof (1
sentence) or a counter example. You can use all results from the lecture.

(a)

Every decidable language is of type 0.
Solution:

Correct. From the lecture, we know: if A is decidable then A and A are semi-decidable and
thus of type 0.

If A is decidable then A is also decidable.
Solution:

Correct. The characteristic function of A is y 5(w) = 1—x.a(w). This function is computable
if x4 is computable.

Every language that is accepted by a Turing machine is decidable.
Solution:

Incorrect. If a language is accepted by a Turing machine, it is semi-decidable but not
necessarily decidable. We had several examples in the lecture for languages that are semi-
decidable but not decidable, e.g. the special halting problem.

Every language that can be described by a regular expression is decidable.
Solution:

Correct. For every regular language there exists a DFA that accepts exactly this language.
It is easy to construct a program for a given DFA that simulates the DFA on a given input
and returns 1 or 0 at the end, depending on whether the automaton ends in an accepting
state or not.

Every decidable language is context-free.
Solution:

Incorrect. For example, the language {a"b"c” | n € N} is decidable (the Turing machine
from the exercise in C7 was deterministic and can easily be modified to do this), but we
know from the lecture (C6) that it is not context-free.

Additional information:
In general, we have the following connections:

e Every type-3 language (regular language) is a type-2 language (context-free language), but

the reverse is not true in general.

e Every type-2 language (context-free language) is a type-1 language (context-sensitive lan-

guage), but the reverse is not true in general.

e Every type-1 language is decidable, but not every decidable language is of type 1. (In

contrast to the other statements, this was not shown in the lecture.)

e Every decidable language is semi-decidable (a type-0 language), but the reverse is not true

in general.



