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Exercise Sheet 5 — Solutions

Exercise 5.1 (Regular Expressions; 2 Points)

Consider the following regular expressions over the alphabet Σ = {a, b}. For each regular expres-
sion, specify two words that are in the corresponding language and two words that are not in the
corresponding language.

(a) bba|bbb

(b) b∗a(b∗ab∗ab∗)∗

(c) (a(a|b)|b)(a|b)∗

(d) (ε|a)b|b∅a

Solution:

(a) L(bba|bbb) = {bba, bbb}
The words bba and bbb are in the language. Examples for words that are not in the language
are a and bbabb.

(b) L(b∗a(b∗ab∗ab∗)∗) = {w ∈ Σ∗ | w contains an odd number of as}
Examples for words in the language are a and ababbbaaa. Examples for words that are not
in the language are aa and abbbba.

(c) L((a(a|b)|b)(a|b)∗) = Σ∗ \ {ε, a}
The words b and ab are examples for words in the language. The words that are not in the
language are ε and a.

(d) L((ε|a)b|b∅a) = {b, ab}
The words b and ab are in the language. Examples for words that are not in the language
are ε and ba.

Exercise 5.2 (Pumping Lemma for Regular Languages; 4 Points)

Are the following languages over Σ = {a, b, c, d} regular? If so, prove it by specifying a regular
expression which describes the language. If not, prove it with help of the Pumping-Lemma.

(a) L1 = {anbmcn+m | m,n ∈ N0}

Solution:

Assume L1 is regular. Let p be a pumping number of L1. The word x = apb3cp+3 is in L1

and satisfies |x| ≥ p. We know from the pumping lemma that there are words u, v and w
with x = uvw, |uv| ≤ p, |v| ≥ 1 and uviw ∈ L1 for all i ≥ 0.

From |uv| ≤ p we know that uv can only consist of as. If we pump x smaller, i.e. we choose
i = 0, we get the word x0 := uv0w = ap−|v|b3cp+3. As |v| ≥ 1 we know that p−|v|+3 < p+3
and see that x0 6∈ L1 (since the number of as added to the number of bs is not the number
of cs, and thus the properties of the language are not satisfied). This is a contradiction to
the pumping lemma and thus L1 cannot be regular.

(b) L2 = {anb3cmd3 | m,n ∈ N0}

Solution:

L2 is regular because it is described by the regular expression a∗bbbc∗ddd.

1



Exercise 5.3 (Minimal DFA; 2 Points)

Specify a minimal DFA which is equivalent to the following DFA:

z0 z1 z2

z3z4

a

b

a

b

a

b b

a

a

b

Solution:

We use the algorithm on slide 7 of slide set C4 to construct the minimal DFA.

z0 z1 z2 z3

z4

z3

z2

z1

×
×
×
×

× ××

×

We can merge node z0 with z4 and node z2 with z3 to get a minimal DFA.

z0z4 z1 z2z3

a

b

a

b

a, b

Exercise 5.4 (Product Automaton; 2 Points)

Consider the following DFAs M1 and M2.

M1 : q0 q1 q2

a

b

b

a
a, b M2 : s0 s1

b

a
a, b

Specify the product automaton that accepts L(M1) ∩ L(M2).
How would you have to change the definition of the end states (in general) to receive an DFA for
the union of two languages?

Solution:

L(M1) = {ambn | m,n ≥ 0}, L(M2) = {w | w contains at least one a}
L(M1) ∩ L(M2) = {ambn | m ≥ 1, n ≥ 0}
The product automaton looks as follows:
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q0s0 q1s0 q2s0

q0s1 q1s1 q2s1

a

b
b

a
a

b

a
b a

b

a, b

For the intersection of the two languages, a state of the product automaton is an end state if it
combines two end states of the two original DFAs. If we only required that one of the states in
the pair must be an end state of an original DFA, the product automaton would accept the union
of the languages.
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