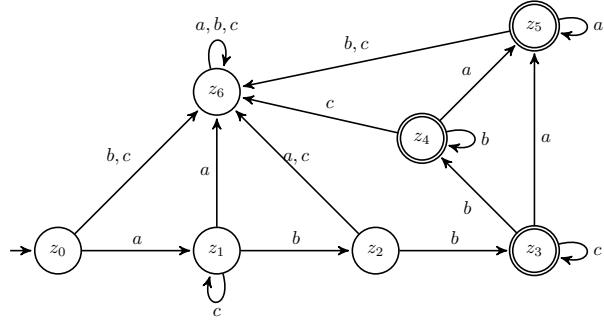


Theory of Computer Science


G. Röger
Spring Term 2019

University of Basel
Computer Science

Exercise Sheet 4 — Solutions

Exercise 4.1 (DFA and regular grammar; 2 + 2 marks)

Consider the following DFA M :

(a) Which language does the DFA accept?

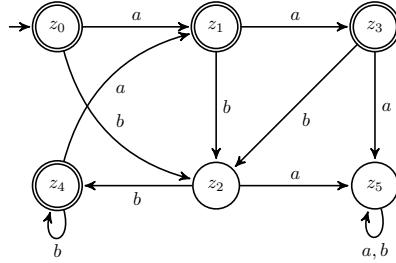
Solution:

$$\mathcal{L}(M) = \{ac^{n_1}bbc^{n_2}b^{n_3}a^{n_4} \mid n_1, n_2, n_3, n_4 \geq 0\}$$

(b) Specify a *regular* grammar, which generates the same language.

Solution:

We construct a formal grammar as shown in the proof on slide 13 of slide set C02. Since no accept state can be reached from state z_6 we can directly omit all rules that contain the corresponding variable. Additionally we apply the transformation from slide 5/6 of slide set C02 in order to remove the non-regular ε -rules. This results in a regular grammar $G = (\{a, b, c\}, \{A_0, \dots, A_5\}, P, A_0)$ with the following rules in P :


$$\begin{array}{llll}
 A_0 \rightarrow aA_1 & A_1 \rightarrow cA_1 & A_1 \rightarrow bA_2 & A_2 \rightarrow bA_3 \\
 A_2 \rightarrow b & A_3 \rightarrow cA_3 & A_3 \rightarrow c & A_3 \rightarrow aA_5 \\
 A_3 \rightarrow a & A_3 \rightarrow bA_4 & A_3 \rightarrow b & A_4 \rightarrow bA_4 \\
 A_4 \rightarrow b & A_4 \rightarrow aA_5 & A_4 \rightarrow a & A_5 \rightarrow aA_5 \\
 A_5 \rightarrow a & & &
 \end{array}$$

Exercise 4.2 (DFA; 2 Points)

Specify a deterministic finite automaton that accepts the language over $\Sigma = \{a, b\}$ where the words of the language have the following property:

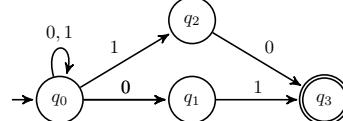
When a occurs at the beginning of the word or after b , then there directly follows at most one further a . When b occurs at the beginning of the word or after a , then there directly follows at least one further b .

Solution:

Exercise 4.3 (Regular grammar and NFA; 1+1 Points)

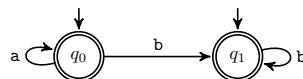
Consider the language $L = \{w \in \{0,1\}^* \mid w \text{ ends with } 01 \text{ or with } 10\}$.

(a) Specify a regular grammar that generates L .


Solution:

$G = \langle \{0,1\}, \{S, A, B\}, P, S \rangle$, where P contains the following rules:

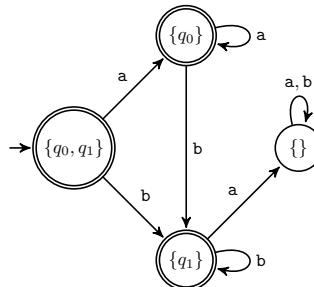
$$\begin{aligned} S &\rightarrow 0S \mid 1S \mid 0A \mid 1B \\ A &\rightarrow 1 \\ B &\rightarrow 0 \end{aligned}$$


(b) Draw the state diagram of an NFA with at most four states that accepts L .

Solution:

Exercise 4.4 (NFA; 0.5+1.5 Points)

Consider the following NFA M :


(a) What language $\mathcal{L}(M)$ does it accept?

Solution:

$$\mathcal{L}(M) = \{a^m b^n \mid m, n \geq 0\}$$

(b) Use the construction from the proof of the Theorem by Rabin & Scott to find a DFA that accepts the same language.

Solution:

