

Theory of Computer Science

G. Röger
Spring Term 2019

University of Basel
Computer Science

Exercise Sheet 3 — Solutions

Exercise 3.1 (Refutation Theorem; 1.5 Points)

Prove the refutation theorem, that is, show for any set of formulas KB and any formula φ that

$$KB \cup \{\varphi\} \text{ is unsatisfiable if and only if } KB \models \neg\varphi.$$

Solution:

“ \Rightarrow ”: If $KB \cup \{\varphi\}$ is unsatisfiable then there is no interpretation \mathcal{I} with $\mathcal{I} \models KB$ and $\mathcal{I} \models \varphi$. Hence for every \mathcal{I} with $\mathcal{I} \models KB$ it holds that $\mathcal{I} \not\models \varphi$ and we conclude that $KB \models \neg\varphi$.

“ \Leftarrow ”: If $KB \models \neg\varphi$ then it holds for all \mathcal{I} with $\mathcal{I} \models KB$ that $\mathcal{I} \models \neg\varphi$ and hence $\mathcal{I} \not\models \varphi$. Therefore there is no interpretation with $\mathcal{I} \models KB \cup \{\varphi\}$, so $KB \cup \{\varphi\}$ is unsatisfiable.

Exercise 3.2 (Correctness of the Resolution Calculus; 1.5 Points)

Prove the correctness of the resolution rule

$$\frac{C_1 \cup \{L\}, C_2 \cup \{\neg L\}}{C_1 \cup C_2},$$

by showing that for all interpretations \mathcal{I} with $\mathcal{I} \models \bigvee_{\ell \in C_1 \cup \{L\}} \ell$ and $\mathcal{I} \models \bigvee_{\ell \in C_2 \cup \{\neg L\}} \ell$ it holds that $\mathcal{I} \models \bigvee_{\ell \in C_1 \cup C_2} \ell$.

Solution:

Let \mathcal{I} be a model of $\bigvee_{\ell \in C_1 \cup \{L\}} \ell$ and of $\bigvee_{\ell \in C_2 \cup \{\neg L\}} \ell$. We make a case distinction:

Case 1 ($\mathcal{I} \models L$): In this case we can conclude from $\mathcal{I} \models \bigvee_{\ell \in C_2 \cup \{\neg L\}} \ell$ that $\mathcal{I} \models \bigvee_{\ell \in C_2} \ell$. This implies that $\mathcal{I} \models \bigvee_{\ell \in C_1 \cup C_2} \ell$.

Case 2 ($\mathcal{I} \not\models L$): It follows from $\mathcal{I} \models \bigvee_{\ell \in C_1 \cup \{L\}} \ell$ that $\mathcal{I} \models \bigvee_{\ell \in C_1} \ell$ and hence $\mathcal{I} \models \bigvee_{\ell \in C_1 \cup C_2} \ell$.

All steps were based on the semantics of the disjunction. Since the two cases cover all possible situations, we conclude that $\mathcal{I} \models \bigvee_{\ell \in C_1 \cup C_2} \ell$.

Exercise 3.3 (Resolution Calculus; 3 Points)

Consider the following knowledge base

$$KB = \{(A \leftrightarrow \neg D), (\neg A \rightarrow (B \vee C)), ((A \rightarrow E) \wedge (B \vee C \vee F)), (E \rightarrow (F \rightarrow (B \vee C))), (C \rightarrow G), (G \rightarrow \neg C)\}.$$

Use the resolution calculus to show that $KB \models (B \wedge \neg C)$.

Solution:

In order to show that $KB \models (B \wedge \neg C)$, we prove that $KB' = KB \cup \{\neg(B \wedge \neg C)\}$ is unsatisfiable. Since we want to apply resolution we first need to transform KB' into conjunctive normal form:

Formulas (and Equivalences)	Clauses
$(A \leftrightarrow \neg D)$	$\{\neg A, \neg D\}$
$\equiv ((A \rightarrow \neg D) \wedge (\neg D \rightarrow A))$	$\{A, D\}$
$\equiv ((\neg A \vee \neg D) \wedge (\neg \neg D \vee A))$	
$\equiv ((\neg A \vee \neg D) \wedge (D \vee A))$	
$(\neg A \rightarrow (B \vee C))$	$\{A, B, C\}$
$\equiv (\neg \neg A \vee (B \vee C))$	
$\equiv (A \vee B \vee C)$	
$((A \rightarrow E) \wedge (B \vee C \vee F))$	$\{\neg A, E\}$
$\equiv ((\neg A \vee E) \wedge (B \vee C \vee F))$	$\{B, C, F\}$
$(E \rightarrow (F \rightarrow (B \vee C)))$	$\{B, C, \neg E, \neg F\}$
$\equiv (\neg E \vee (\neg F \vee (B \vee C)))$	
$\equiv (\neg E \vee \neg F \vee B \vee C)$	
$(C \rightarrow G) \equiv (\neg C \vee G)$	$\{\neg C, G\}$
$(G \rightarrow \neg C) \equiv (\neg G \vee \neg C)$	$\{\neg C, \neg G\}$
$\neg(B \wedge \neg C) \equiv (\neg B \vee C)$	$\{\neg B, C\}$

We need to derive the empty clause \square from the following set of clauses Δ :

$$\Delta = \{\{\neg A, \neg D\}, \{A, D\}, \{A, B, C\}, \{\neg A, E\}, \{B, C, F\}, \\ \{B, C, \neg E, \neg F\}, \{\neg C, G\}, \{\neg C, \neg G\}, \{\neg B, C\}\}.$$

One possible derivation:

$K_1 = \{\neg C, G\}$	from Δ
$K_2 = \{\neg C, \neg G\}$	from Δ
$K_3 = \{\neg C\}$	from K_1 and K_2
$K_4 = \{A, B, C\}$	from Δ
$K_5 = \{A, B\}$	from K_3 and K_4
$K_6 = \{C, \neg B\}$	from Δ
$K_7 = \{\neg B\}$	from K_3 and K_6
$K_8 = \{A\}$	from K_5 and K_7
$K_9 = \{\neg A, E\}$	from Δ
$K_{10} = \{E\}$	from K_8 and K_9
$K_{11} = \{B, C, \neg E, \neg F\}$	from Δ
$K_{12} = \{B, C, \neg F\}$	from K_{10} and K_{11}
$K_{13} = \{C, \neg F\}$	from K_7 and K_{12}
$K_{14} = \{\neg F\}$	from K_3 and K_{13}
$K_{15} = \{B, C, F\}$	from Δ
$K_{16} = \{C, F\}$	from K_7 and K_{15}
$K_{17} = \{C\}$	from K_{14} and K_{16}
$K_{18} = \square$	from K_3 and K_{17}

With the contradiction theorem we can conclude that $KB \models (B \wedge \neg C)$.

Exercise 3.4 (Predicate Logic; 3 Points)

Consider the following predicate logic formula φ with the signature $\langle \{x, y\}, \{c\}, \{f, g\}, \{P\} \rangle$.

$$\varphi = (\neg P(c) \wedge \forall x \exists y ((f(y) = g(x)) \wedge P(y)))$$

Specify a model \mathcal{I} of φ with $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ and $U = \{u_1, u_2, u_3\}$. Prove that $\mathcal{I} \models \varphi$. Why is no variable assignment α required to specify a model of φ ?

Solution:

The following interpretation $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ is a model of φ .

$$\begin{aligned} U &= \{u_1, u_2, u_3\} \\ c^{\mathcal{I}} &= u_1 \\ f^{\mathcal{I}} = g^{\mathcal{I}} &= \{u_1 \mapsto u_3, u_2 \mapsto u_3, u_3 \mapsto u_3\} \\ P^{\mathcal{I}} &= \{u_3\} \end{aligned}$$

For every $u \in U$ we define $\alpha_u = x \mapsto u, y \mapsto u_3$.

$$\begin{aligned} \text{By definition we have } f(y)^{\mathcal{I}, \alpha_u} &= f^{\mathcal{I}}(y^{\mathcal{I}, \alpha_u}) = f^{\mathcal{I}}(\alpha_u(y)) = f^{\mathcal{I}}(u_3) = u_3 \\ \text{and } g(x)^{\mathcal{I}, \alpha_u} &= g^{\mathcal{I}}(x^{\mathcal{I}, \alpha_u}) = g^{\mathcal{I}}(\alpha_u(x)) = g^{\mathcal{I}}(u) = u_3 \\ \text{and thus } f(y)^{\mathcal{I}, \alpha_u} &= g(x)^{\mathcal{I}, \alpha_u} \end{aligned}$$

It follows that $\mathcal{I}, \alpha_u \models (f(y) = g(x))$

By definition we also have $y^{\mathcal{I}, \alpha_u} = \alpha_u(y) = u_3 \in P^{\mathcal{I}}$ so $\mathcal{I}, \alpha_u \models P(y)$

Together with the line before that we get $\mathcal{I}, \alpha_u \models ((f(y) = g(x)) \wedge P(y))$

For every variable assignment α we know that $\alpha[x := u][y := u_3] = \alpha_u$. Thus, for every α and every $u \in U$

$$\begin{aligned} \mathcal{I}, \alpha[x := u][y := u_3] &\models ((f(y) = g(x)) \wedge P(y)) \\ \mathcal{I}, \alpha[x := u] &\models \exists y ((f(y) = g(x)) \wedge P(y)) \\ \mathcal{I}, \alpha &\models \forall x \exists y ((f(y) = g(x)) \wedge P(y)) \end{aligned}$$

We also know $c^{\mathcal{I}, \alpha} = c^{\mathcal{I}} = u_1 \notin P^{\mathcal{I}}$ so $\mathcal{I}, \alpha \not\models P(c)$ or $\mathcal{I}, \alpha \models \neg P(c)$. Putting things together, we get

$$\mathcal{I}, \alpha \models (\neg P(c) \wedge \forall x \exists y ((f(y) = g(x)) \wedge P(y))).$$

Since all variables are bound, the proof does not depend on the variable assignment α , so it is not required to specify a model.

Exercise 3.5 (Predicate logic; 1 Point)

Consider the formula φ over a signature with predicate symbols P (1-ary), Q (2-ary) and R (3-ary), the 1-ary function symbol f , the constant symbol c and the variable symbols x, y and z .

$$\varphi = (\forall x \exists y (P(z) \rightarrow Q(y, x)) \vee \neg \exists y R(c, x, f(y)))$$

Mark all occurrences of free variables in φ . Additionally specify the set of free variables of φ (without proof).

Solution:

$$\varphi = (\forall x \exists y (P(z) \rightarrow Q(y, x)) \vee \neg \exists y R(c, x, f(y))).$$

$$free(\varphi) = \{x, z\}$$