

Theory of Computer Science

G. Röger
Spring Term 2019

University of Basel
Computer Science

Exercise Sheet 2 — Solutions

Exercise 2.1 (Semantics; 0.5+0.5+1+1+1 Points)

Consider the propositional formula φ over $\{A, B, C, D, E, F\}$:

$$\varphi = ((F \vee ((\neg B \leftrightarrow ((C \wedge A) \rightarrow \neg B)) \vee (D \rightarrow E))) \rightarrow (A \rightarrow \neg F))$$

(a) How many lines would be needed for a truth table for φ ?

Solution:

φ contains 6 atomic statements, thus a truth table for φ would need $2^6 = 64$ lines.

(b) Formula φ is an implication. Specify the truth table for the general implication formula $\varphi \rightarrow \psi$. Attention: You should **not** specify the truth table of φ .

Solution:

$\mathcal{I} \models \varphi$	$\mathcal{I} \models \psi$	$\mathcal{I} \models (\varphi \rightarrow \psi)$
No	No	Yes
No	Yes	Yes
Yes	No	No
Yes	Yes	Yes

(c) Specify a model \mathcal{I} for φ and prove without truth table that $\mathcal{I} \models \varphi$.

Solution:

$$\mathcal{I} = \{A \mapsto 1, B \mapsto 1, C \mapsto 1, D \mapsto 1, E \mapsto 1, F \mapsto 0\}$$

To make the proof more concise, we define:

$$\psi = (F \vee ((\neg B \leftrightarrow ((C \wedge A) \rightarrow \neg B)) \vee (D \rightarrow E)))$$

From $\mathcal{I}(F) = 0$ follows $\mathcal{I} \not\models F$ and from this also $\mathcal{I} \models \neg F$. Thus $\mathcal{I} \models (A \rightarrow \neg F)$ holds (no matter whether $\mathcal{I} \models A$ holds or not). From this we conclude $\mathcal{I} \models (\psi \rightarrow (A \rightarrow \neg F))$ (no matter whether $\mathcal{I} \models \psi$ holds or not). The formula $(\psi \rightarrow (A \rightarrow \neg F))$ is φ , which means we have shown that $\mathcal{I} \models \varphi$.

(d) Specify an assignment \mathcal{I} with $\mathcal{I} \not\models \varphi$ and prove that \mathcal{I} has the desired property without a truth table.

Solution:

$$\mathcal{I} = \{A \mapsto 1, B \mapsto 1, C \mapsto 1, D \mapsto 1, E \mapsto 1, F \mapsto 1\}$$

To make the proof more concise, we define:

$$\psi = ((\neg B \leftrightarrow ((C \wedge A) \rightarrow \neg B)) \vee (D \rightarrow E))$$

From $\mathcal{I}(F) = 1$ follows $\mathcal{I} \models F$ and from this also $\mathcal{I} \models (F \vee \psi)$ (no matter whether $\mathcal{I} \models \psi$ holds or not).

From $\mathcal{I}(A) = 1$ follows $\mathcal{I} \models A$. From $\mathcal{I} \models F$ follows $\mathcal{I} \not\models \neg F$. From $\mathcal{I} \models A$ together with $\mathcal{I} \not\models \neg F$ we can conclude that $\mathcal{I} \not\models (A \rightarrow \neg F)$.

From $\mathcal{I} \models (F \vee \psi)$ and $\mathcal{I} \not\models (A \rightarrow \neg F)$ follows $\mathcal{I} \not\models ((F \vee \psi) \rightarrow (A \rightarrow \neg F))$. The formula $((F \vee \psi) \rightarrow (A \rightarrow \neg F))$ is φ , which means we have shown that $\mathcal{I} \not\models \varphi$.

(e) Which of the properties *satisfiable*, *unsatisfiable*, *valid*, and *falsifiable* are true for φ ? Justify your answer for each of the four properties.

Solution:

- Formula φ is satisfiable because the interpretation from part (c) is a model. Thus, it is not unsatisfiable.
- Formula φ is falsifiable because the interpretation from part (d) is no model. Thus, it is not valid.

Exercise 2.2 (Equivalences; 1.5+1.5 Points)

(a) Transform the following formula into CNF by applying the equivalence rules shown in the lecture. For each step, only apply one equivalence rule and also specify it.

$$\varphi = ((A \rightarrow B) \leftrightarrow \neg C)$$

Solution:

$$\begin{aligned}
 \varphi &= ((A \rightarrow B) \leftrightarrow \neg C) \\
 &\equiv ((\neg A \vee B) \leftrightarrow \neg C) && (\rightarrow\text{-Elimination}) \\
 &\equiv (((\neg A \vee B) \rightarrow \neg C) \wedge (\neg C \rightarrow (\neg A \vee B))) && (\leftrightarrow\text{-Elimination}) \\
 &\equiv ((\neg(\neg A \vee B) \vee \neg C) \wedge (\neg C \rightarrow (\neg A \vee B))) && (\rightarrow\text{-Elimination}) \\
 &\equiv ((\neg(\neg A \vee B) \vee \neg C) \wedge (\neg\neg C \vee (\neg A \vee B))) && (\rightarrow\text{-Elimination}) \\
 &\equiv ((\neg(\neg A \vee B) \vee \neg C) \wedge (C \vee (\neg A \vee B))) && (\text{Double negation}) \\
 &\equiv (((\neg\neg A \wedge \neg B) \vee \neg C) \wedge (C \vee (\neg A \vee B))) && (\text{De Morgan}) \\
 &\equiv (((A \wedge \neg B) \vee \neg C) \wedge (C \vee (\neg A \vee B))) && (\text{Double negation}) \\
 &\equiv ((\neg C \vee (A \wedge \neg B)) \wedge (C \vee (\neg A \vee B))) && (\text{Commutativity}) \\
 &\equiv (((\neg C \vee A) \wedge (\neg C \vee \neg B)) \wedge (C \vee (\neg A \vee B))) && (\text{Distributivity})
 \end{aligned}$$

(b) Prove that the following formula is unsatisfiable by showing that $\varphi \equiv (A \wedge \neg A)$ holds. Use the equivalence rules from the lecture, only apply one rule for each step and specify the applied rule.

$$\varphi = \neg((A \wedge (\neg B \rightarrow A)) \vee \neg A)$$

Solution:

$$\begin{aligned}
 \varphi &= \neg((A \wedge (\neg B \rightarrow A)) \vee \neg A) \\
 &\equiv \neg((A \wedge (\neg\neg B \vee A)) \vee \neg A) && (\rightarrow\text{-Elimination}) \\
 &\equiv \neg((A \wedge (A \vee \neg\neg B)) \vee \neg A) && (\text{Commutativity}) \\
 &\equiv \neg(A \vee \neg A) && (\text{Absorption}) \\
 &\equiv (\neg A \wedge \neg\neg A) && (\text{De Morgan}) \\
 &\equiv (\neg A \wedge A) && (\text{Double negation}) \\
 &\equiv (A \wedge \neg A) && (\text{Commutativity})
 \end{aligned}$$

Exercise 2.3 (Logical Consequence; 1.5+1.5 Points)

Consider the following formula set over $\{A, B, C\}$.

$$KB = \{(A \rightarrow \neg C), (A \vee \neg B), (\neg A \vee C)\}$$

(a) Does a model \mathcal{I} of KB exist which is also a model for $\varphi = (A \vee B)$? Prove your statement.

Solution:

No. We will prove this by contradiction: Assume there is a \mathcal{I} with $\mathcal{I} \models KB$ and $\mathcal{I} \models (A \vee B)$. Then it holds that $\mathcal{I} \models A$ or $\mathcal{I} \models B$. We distinct those two cases:

Case 1 ($\mathcal{I} \models A$): From $\mathcal{I} \models KB$ follows that $\mathcal{I} \models (A \rightarrow \neg C) = (\neg A \vee \neg C)$. From this we conclude $\mathcal{I} \models \neg A$ or $\mathcal{I} \models \neg C$. The first case cannot occur since from $\mathcal{I} \models A$ follows $\mathcal{I} \not\models \neg A$. Thus the second case ($\mathcal{I} \models \neg C$) must hold.

But from $\mathcal{I} \models KB$ also follows that $\mathcal{I} \models (\neg A \vee C)$, which means $\mathcal{I} \models \neg A$ or $\mathcal{I} \models C$. But neither $\mathcal{I} \models \neg A$ can hold (since $\mathcal{I} \models A$ holds), nor $\mathcal{I} \models C$ (since $\mathcal{I} \models \neg C$ holds). Thus this case results in a contradiction.

Case 2 ($\mathcal{I} \not\models A$): Since $\mathcal{I} \models (A \vee B)$, it holds that $\mathcal{I} \models B$ and therefore $\mathcal{I} \not\models \neg B$. Since $\mathcal{I} \not\models A$ and $\mathcal{I} \not\models \neg B$, we know that $\mathcal{I} \not\models (A \vee \neg B)$. As $(A \vee \neg B) \in KB$, this is a contradiction to $\mathcal{I} \models KB$.

(b) Prove that all models \mathcal{I} of KB are also models of $\varphi = (\neg B \vee C)$.

Solution:

We consider a model \mathcal{I} of KB . From $\mathcal{I} \models KB$ follows $\mathcal{I} \models (A \vee \neg B)$. From this follows that $\mathcal{I} \models A$ or $\mathcal{I} \models \neg B$.

In case $\mathcal{I} \models A$ we can conclude from $\mathcal{I} \models KB$ that $\mathcal{I} \models (\neg A \vee C)$, and from this follows that $\mathcal{I} \models \neg A$ or $\mathcal{I} \models C$. The first case is in contradiction to the case we currently consider ($\mathcal{I} \models A$), thus $\mathcal{I} \models C$ must hold. From this we conclude that $\mathcal{I} \models (\neg B \vee C)$.

In case $\mathcal{I} \models \neg B$ we can directly conclude that $\mathcal{I} \models (\neg B \vee C)$.