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Aufgabe 1.1 (2 Punkte)

Zeigen Sie mit einem direkten Beweis: Für alle endlichen Menge S gilt, dass die Potenzmenge
P(S) Kardinalit 2|S| hat.

Lösung:

Sei S eine beliebige endliche Menge. Man kann jede Teilmenge von S bilden, indem man über alle
Elemente e von S geht und e entweder in die Teilmenge aufnimmt oder nicht. Jede Sequenz von
Entscheidungen ergibt dabei eine unterschiedliche Teilmenge.
Insgesamt hat S also 2 · 2 · . . . · 2︸ ︷︷ ︸

|S| mal

= 2|S| Teilmengen und damit ist |P(S)| = 2|S|.

Aufgabe 1.2 (2 Punkte)

Beweisen Sie mit einem Beweis durch Widerspruch, dass für alle n ∈ N0 gilt: Wenn n + 7 eine
Primzahl ist, dann ist n keine Primzahl.

Lösung:

Angenommen es gibt ein n ∈ N0, so dass n + 7 und n Primzahlen sind.
Entweder n oder n+7 muss gerade sein, da eine gerade Zahl plus 7 ungerade ist und eine ungerade
Zahl plus 7 gerade. Es gibt nur eine gerade Primzahl (2) und n+7 ist auf jeden Fall grösser. Daher
muss n = 2 gelten. Damit ist aber n+7 = 9 = 3 ·3 keine Primzahl. Widerspruch zur Annahme,
dass n + 7 und n Primzahlen sind.

Aufgabe 1.3 (1 + 2 Punkte)

(a) Beweisen Sie per vollständiger Induktion, dass n! > 2n für alle n ≥ 4.

Lösung:

Induktionsanfang n = 4: 4! = 24 > 16 = 24

Induktionsvoraussetzung: k! > 2k für alle 4 ≤ k ≤ n

Induktionsschritt: n→ n + 1

(n + 1)! = (n + 1) · n!

IV
> (n + 1) · 2n

> 2 · 2n = 2n+1

(b) Beweisen Sie per Induktion über die Anzahl n der Elemente von S, dass für jede endliche
Menge S die Potenzmenge P(S) Kardinalit 2|S| hat.

Lösung:

Induktionsanfang n = 0 bzw. S = ∅: |P(∅)| = |{∅}| = 1 = 20.

Induktionsannahme: für alle endlichen Mengen S mit |S| ≤ n gilt |P(S)| = 2|S|.

Induktionsschritt n→ n + 1:
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Sei S eine beliebige Menge mit n + 1 Elementen und sei e ein beliebiges Element aus S.
Definiere S′ = S \ {e}. Damit ist |S′| = n und laut Induktionsannahme gibt es insgesamt
2|S

′| Teilmengen T ⊆ S′. Für jede Teilmenge T ⊆ S′ sind T selbst und T ∪ {e} Teilmengen
von S. Diese Menge sind alle Teilmengen von S und gleichzeitig alle verschieden. Es gilt also
|P(S)| = 2|P(S′)| = 2 · 2n = 2n+1 = 2|S|.

Aufgabe 1.4 (3 Punkte)

Wir definieren zunächst induktiv eine einfache Teilmenge von mathematischen Ausdrücken, die
nur die Zeichen

”
N“,

”
Z“,

”
⊕“,

”
⊗“,

”
J“ und

”
K“ verwenden. Die Menge E der einfachen Ausdrücke

ist induktiv wie folgt definiert:

• N und Z sind einfache Ausdrücke.

• Wenn x und y einfache Ausdrücke sind, dann ist auch Jx⊗ yK ein einfacher Ausdruck.

• Wenn x und y einfache Ausdrücke sind, dann ist auch Jx⊕ yK ein einfacher Ausdruck.

Beispiele für einfache Ausdrücke: Z, JZ⊗ NK, JJZ⊗ ZK⊕ JN⊕ ZKK
Ausserdem definieren wir eine Funktion f : E → N0 als

• f(N) = 0, f(Z) = 2

• f(Jx⊗ yK) = f(x) · f(y)

• f(Jx⊕ yK) = f(x) + f(y)

Also zum Beispiel: f(Z) = 2, f(JZ⊗ NK) = f(Z) · f(N) = 2 · 0 = 0, f(JJZ⊗ ZK⊕ JN⊕ ZKK) = 6.

Beweisen Sie durch strukturelle Induktion, dass für jeden einfachen Ausdruck x ∈ E gilt, dass

f(x) ist gerade.

Lösung:

Wir zeigen die Aussage durch Induktion über die Struktur der einfachen Aussagen.
Induktionsanfang: Die Aussage gilt offensichtlich für alle Basisfälle, da f(N) = 0 und f(Z) = 2
gerade sind.
Induktionsvoraussetzung: Wenn x und y Teilausdrücke eines zusammengesetzten Ausdrucks z sind,
dann sind f(x) und f(y) gerade.
Induktionsschritt: Wir müssen zeigen, dass die Aussage für zusammengesetzte Ausdrücke z gilt,
unter der Induktionsvoraussetzung, dass sie für alle Teilausdrücke gilt.
Für den Fall z = Jx⊗yK gilt f(z) = f(x) ·f(y). Nach Induktionsvoraussetzung sind f(x) und f(y)
beide gerade, d.h., es gibt n,m ∈ Z mit f(x) = 2n und f(y) = 2m. Damit ist f(z) = 2n·2m = 4nm
auch gerade.
Analog dazu gilt für den Fall z = Jx ⊕ yK: f(z) = f(x) + f(y). Nach Induktionsvoraussetzung
sind f(x) und f(y) beide gerade, d.h., es gibt n,m ∈ Z mit f(x) = 2n und f(y) = 2m. Damit ist
f(z) = 2n + 2m = 2(n + m) auch gerade.

2


