

Theory of Computer Science

G. Röger
Spring Term 2019

University of Basel
Computer Science

Exercise Sheet 1 — Solutions

Exercise 1.1 (2 marks)

Prove with a direct proof: for all finite sets S , the power set $\mathcal{P}(S)$ has cardinality $2^{|S|}$.

Solution:

Consider an arbitrary finite set S . Each subset of S can be “constructed” by iterating over all elements $e \in S$ and either including e to the subset or not. Each such sequence of decisions results in a different subset. Thus, S has $\underbrace{2 \cdot 2 \cdot \dots \cdot 2}_{|S| \text{ times}} = 2^{|S|}$ subsets and $|\mathcal{P}(S)| = 2^{|S|}$.

Exercise 1.2 (2 marks)

Prove by contradiction that for all $n \in \mathbb{N}_0$ the following holds: if $n + 7$ is prime, then n is not prime.

Solution:

Assume there is a number $n \in \mathbb{N}_0$, such that $n + 7$ and n are prime.

Either n or $n + 7$ have to be even since an even number increased by 7 is odd and an odd number increased by 7 is even. There is only one even prime (2) and $n + 7$ is definitively larger. Thus, $n = 2$ must be true. But then $n + 7 = 9 = 3 \cdot 3$ is not prime. \rightsquigarrow contradiction to the assumption that $n + 7$ and n are prime.

Exercise 1.3 (1 + 2 marks)

(a) Prove by mathematical induction that $n! > 2^n$ for all $n \geq 4$.

Solution:

Induction basis $n = 4$: $4! = 24 > 16 = 2^4$

Induction hypothesis: $k! > 2^k$ for all $4 \leq k \leq n$

Inductive step: $n \rightarrow n + 1$

$$\begin{aligned} (n+1)! &= (n+1) \cdot n! \\ &\stackrel{\text{IH}}{>} (n+1) \cdot 2^n \\ &> 2 \cdot 2^n = 2^{n+1} \end{aligned}$$

(b) Prove by induction over the number n of elements in S that for every finite set S the power set $\mathcal{P}(S)$ has cardinality $2^{|S|}$.

Solution:

Induction basis $n = 0$ resp. $S = \emptyset$: $|\mathcal{P}(\emptyset)| = |\{\emptyset\}| = 1 = 2^0$.

Induction hypothesis: for all finite sets S with $|S| \leq n$ it holds that $|\mathcal{P}(S)| = 2^{|S|}$.

Inductive step $n \rightarrow n + 1$:

Let S be an arbitrary set with $n + 1$ elements and let e be some arbitrary element of S . Consider $S' = S \setminus \{e\}$. Since $|S'| = n$ we can use the induction hypothesis and conclude that there are $2^{|S'|}$ subsets $T \subseteq S'$. For every $T \subseteq S'$, T itself and $T \cup \{e\}$ are subsets of S . These are all subsets of S and they are all different. Hence, $|\mathcal{P}(S)| = 2|\mathcal{P}(S')| = 2 \cdot 2^n = 2^{n+1} = 2^{|S|}$.

Exercise 1.4 (3 marks)

We inductively define a set of simple mathematical expressions which only utilize the following symbols: “Z”, “T”, “ \oplus ”, “ \otimes ”, “[“], and “[”]. The set \mathcal{E} of *simple expressions* is inductively defined as follows:

- Z and T are simple expressions.
- If x and y are simple expressions, $[x \otimes y]$ is also a simple expression.
- If x and y are simple expressions, $[x \oplus y]$ is also a simple expression.

Examples for simple expressions: T, $[T \otimes Z]$, $[[T \otimes T] \oplus [Z \oplus T]]$

Furthermore we define a function $f : \mathcal{E} \rightarrow \mathbb{N}_0$ as follows:

- $f(Z) = 0, f(T) = 2$
- $f([x \otimes y]) = f(x) \cdot f(y)$
- $f([x \oplus y]) = f(x) + f(y)$

So for example: $f(T) = 2, f([T \otimes Z]) = f(T) \cdot f(Z) = 2 \cdot 0 = 0, f([[T \otimes T] \oplus [Z \oplus T]]) = 6$.

Prove the following property for all simple expressions $x \in \mathcal{E}$ by structural induction:

$$f(x) \text{ is even.}$$

Solution:

We prove the statement by induction over the structure of simple expressions.

Induction basis: the statement is obviously true for all base cases, since $f(Z) = 0$ and $f(T) = 2$ are even.

Induction hypothesis: if x and y are partial expressions of a composite expression z , then $f(x)$ and $f(y)$ are even.

Inductive step: We have to show that the statement is true for composite expressions z , using the induction hypothesis that it is true for all partial expressions.

In case $z = [x \otimes y]$ we have $f(z) = f(x) \cdot f(y)$. According to the induction hypothesis $f(x)$ and $f(y)$ are even, i.e., there are numbers $n, m \in \mathbb{Z}$ with $f(x) = 2n$ and $f(y) = 2m$. Then $f(z) = 2n \cdot 2m = 4nm$ is also even.

Analogously, in case $z = [x \oplus y]$ we have $f(z) = f(x) + f(y)$. According to the induction hypothesis $f(x)$ and $f(y)$ are even, i.e., there are numbers $n, m \in \mathbb{Z}$ with $f(x) = 2n$ and $f(y) = 2m$. Then $f(z) = 2n + 2m = 2(n + m)$ is also even.