

Theory of Computer Science

G. Röger
Spring Term 2019

University of Basel
Computer Science

Exercise Sheet 11

Due: Wednesday, May 15, 2019

Exercise 11.1 (Polynomial Reductions, 2.5 + 0.5 marks)

Consider the decision problem 3COLORING:

- *Given:* undirected graph $G = \langle V, E \rangle$
- *Question:* Is there a total function $f : V \rightarrow \{r, g, b\}$ such that $f(v) \neq f(w)$ for all $\{v, w\} \in E$?

and the decision problem 3SAT:

- *Given:* a propositional formula φ in conjunctive normal form with *at most* 3 literals per clause
- *Question:* is φ satisfiable?
 - Show that 3COLORING \leq_p 3SAT.
 - What can we say about 3COLORING, knowing that 3SAT is NP-complete?

Exercise 11.2 (NP-completeness, 2+2 marks)

Consider the decision problem HITTINGSET:

- *Given:* A finite set T , a set of sets $S = \{S_1, \dots, S_n\}$ with $S_i \subseteq T$ for all $i \in \{1, \dots, n\}$, a natural number $K \in \mathbb{N}_0$ with $K \leq |T|$.
- *Question:* Is there a set H with at most K elements that contains at least one element from each set in S ?
 - Prove that HITTINGSET is in NP by specifying a non-deterministic algorithm for HITTINGSET whose runtime is limited by a polynomial in $n|T|$.
 - Prove that HITTINGSET is NP-complete. You may use without proof that the problem VERTEXCOVER (from chapter E5) is NP-complete.

Exercise 11.3 (NP-hardness, 3 marks)

Consider the following decision problems:

INDSET:

- *Given:* Undirected graph $G = \langle V, E \rangle$, number $k \in \mathbb{N}_0$
- *Question:* Does G contain an independent set of size k or larger,
i.e., is there a set $I \subseteq V$ with $|I| \geq k$ and $\{u, v\} \notin E$ for all $u, v \in I$?

SETPACKING:

- *Given:* Finite set M , set $\mathcal{S} = \{S_1, \dots, S_n\}$ with $S_i \subseteq M$ for all $i \in \{1, \dots, n\}$, number $k \in \mathbb{N}_0$
- *Question:* Is there a set $\mathcal{S}' \subseteq \mathcal{S}$ with $|\mathcal{S}'| \geq k$, such that all sets in \mathcal{S}' are pairwise disjoint,
i.e., for all $S_i, S_j \in \mathcal{S}'$ with $S_i \neq S_j$ it holds that $S_i \cap S_j = \emptyset$?

Prove that SETPACKING is NP-hard. You may use that the problem INDSET is NP-complete.