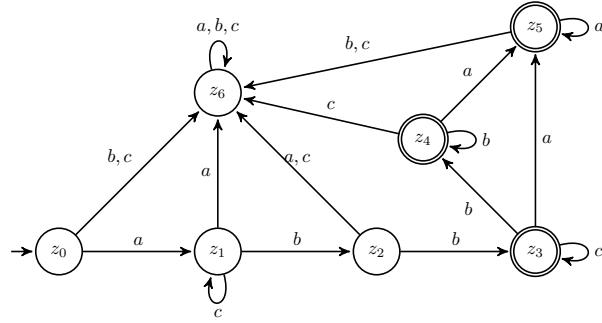


Theory of Computer Science

G. Röger
Spring Term 2019


University of Basel
Computer Science

Exercise Sheet 4

Due: Wednesday, March 27, 2019

Exercise 4.1 (DFA and regular grammar; 2 + 2 marks)

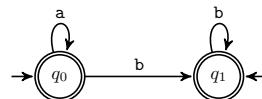
Consider the following DFA M :

- Which language does the DFA accept?
- Specify a *regular* grammar, which generates the same language.

Exercise 4.2 (DFA; 2 Points)

Specify a deterministic finite automaton that accepts the language over $\Sigma = \{a, b\}$ where the words of the language have the following property:

When a occurs at the beginning of the word or after b , then there directly follows at most one further a . When b occurs at the beginning of the word or after a , then there directly follows at least one further b .


Exercise 4.3 (Regular grammar and NFA; 1+1 Points)

Consider the language $L = \{w \in \{0, 1\}^* \mid w \text{ ends with } 01 \text{ or with } 10\}$.

- Specify a regular grammar that generates L .
- Draw the state diagram of an NFA with at most four states that accepts L .

Exercise 4.4 (NFA; 0.5+1.5 Points)

Consider the following NFA M :

- What language $\mathcal{L}(M)$ does it accept?
- Use the construction from the proof of the Theorem by Rabin & Scott to find a DFA that accepts the same language.