Theory of Computer Science

G. Röger Spring Term 2019 University of Basel Computer Science

Exercise Sheet 2 Due: Wednesday, March 6, 2019

Exercise 2.1 (Semantics; 0.5+0.5+1+1+1 Points) Consider the propositional formula φ over {A, B, C, D, E, F}:

$$\varphi = ((\mathbf{F} \lor ((\neg \mathbf{B} \leftrightarrow ((\mathbf{C} \land \mathbf{A}) \rightarrow \neg \mathbf{B})) \lor (\mathbf{D} \rightarrow \mathbf{E}))) \rightarrow (\mathbf{A} \rightarrow \neg \mathbf{F}))$$

- (a) How many lines would be needed for a truth table for φ ?
- (b) Formula φ is an implication. Specify the truth table for the general implication formula $\varphi \to \psi$. Attention: You should **not** specify the truth table of φ .
- (c) Specify a model \mathcal{I} for φ and prove without truth table that $\mathcal{I} \models \varphi$.
- (d) Specify an assignment \mathcal{I} with $\mathcal{I} \not\models \varphi$ and prove that \mathcal{I} has the desired property without a truth table.
- (e) Which of the properties *satisfiable*, *unsatisfiable*, *valid*, and *falsifiable* are true for φ ? Justify your answer for each of the four properties.

Hint: The proofs for this exercises are fairly short (4 and 6 steps, respectively). If you need a considerably larger amount of steps, rethink your solution and try to find an easier proof. The solution of part (b) may help you identify the requirements for \mathcal{I} .

Exercise 2.2 (Equivalences; 1.5+1.5 Points)

(a) Transform the following formula into CNF by applying the equivalence rules shown in the lecture. For each step, only apply one equivalence rule and also specify it.

$$\varphi = ((\mathbf{A} \to \mathbf{B}) \leftrightarrow \neg \mathbf{C})$$

(b) Prove that the following formula is unsatisfiable by showing that $\varphi \equiv (A \land \neg A)$ holds. Use the equivalence rules from the lecture, only apply one rule for each step and specify the applied rule.

$$\varphi = \neg((\mathbf{A} \land (\neg \mathbf{B} \to \mathbf{A})) \lor \neg \mathbf{A})$$

Exercise 2.3 (Logical Consequence; 1.5+1.5 Points) Consider the following formula set over {A, B, C}.

$$KB = \{(A \rightarrow \neg C), (A \lor \neg B), (\neg A \lor C)\}$$

- (a) Does a model \mathcal{I} of KB exist which is also a model for $\varphi = (A \lor B)$? Prove your statement.
- (b) Prove that all models \mathcal{I} of KB are also models of $\varphi = (\neg B \lor C)$.