
Theory of Computer Science

G. Röger
Spring Term 2019

University of Basel
Computer Science

Exercise meeting 10 — Solutions

Exercise 10.1

The following statements are all wrong. In each case, explain in 1–2 sentences why the statement
is wrong and what a correct version would be.

(a) To show that a problem X is NP-complete, it suffices to show that X ∈ NP and X ≤p Y
for some NP-complete problem Y .

Solution:

For X to be NP-complete, it has to be in NP and it has to be NP-hard. One way to show
NP-hardness is to reduce another NP-hard problem to X (the NP-hardness then follows
with the transitivity of reductions, see exercise 13.2 (a)). In this exercise the direction of
the reduction is wrong: it should be Y ≤p X instead of X ≤p Y .

(b) There is an NP-complete problem X that can be solved with an efficient deterministic
algorithm, even if there is none for Sat.

Solution:

If there is such an algorithm for X, then Sat can be efficiently solved by reducing Sat to X.
This is possible, since Sat ∈ NP and since X is NP-hard. For every NP-complete problem
X there are only two possible cases: either there are efficient algorithms for X and Sat
(P = NP) or for none of them (P 6= NP).

(c) For every NP-hard problem X: X ≤p Sat.

Solution:

There are problems that are NP-hard but not in NP. Since Sat is NP-hard, all problems
X ∈ NP have X ≤p Sat. But NP-hard problems outside of NP cannot be reduced to Sat
(otherwise they would be in NP).

(d) If there is a problem X ∈ P such that X ≤p Y for some NP-complete problem Y then
P = NP.

Solution:

Due to P ⊆ NP it is true for all problems X ∈ P and all NP-hard (and therefore also all
NP-complete) problems Y that X ≤p Y . Equality P = NP would follow from Y ≤p X
because then X was NP-complete and in P.

1


