Theory of Computer Science

G. Roger University of Basel
Spring Term 2019 Computer Science

Exercise meeting 10 — Solutions

Exercise 10.1

The following statements are all wrong. In each case, explain in 1-2 sentences why the statement
is wrong and what a correct version would be.

(a)

To show that a problem X is NP-complete, it suffices to show that X € NP and X <, Y
for some NP-complete problem Y.

Solution:

For X to be NP-complete, it has to be in NP and it has to be NP-hard. One way to show
NP-hardness is to reduce another NP-hard problem to X (the NP-hardness then follows
with the transitivity of reductions, see exercise 13.2 (a)). In this exercise the direction of
the reduction is wrong: it should be Y <, X instead of X <, Y.

There is an NP-complete problem X that can be solved with an efficient deterministic
algorithm, even if there is none for SAT.

Solution:

If there is such an algorithm for X, then SAT can be efficiently solved by reducing SAT to X.
This is possible, since SAT € NP and since X is NP-hard. For every NP-complete problem
X there are only two possible cases: either there are efficient algorithms for X and SAT
(P = NP) or for none of them (P # NP).

For every NP-hard problem X: X <, SAT.
Solution:

There are problems that are NP-hard but not in NP. Since SAT is NP-hard, all problems
X € NP have X <, SAT. But NP-hard problems outside of NP cannot be reduced to SAT
(otherwise they would be in NP).

If there is a problem X € P such that X <, Y for some NP-complete problem Y then
P =NP.

Solution:

Due to P C NP it is true for all problems X € P and all NP-hard (and therefore also all
NP-complete) problems Y that X <, Y. Equality P = NP would follow from ¥ <, X
because then X was NP-complete and in P.



