

Theory of Computer Science

G. Röger
Spring Term 2019

University of Basel
Computer Science

Exercise meeting 10 — Solutions

Exercise 10.1

The following statements are all wrong. In each case, explain in 1–2 sentences why the statement is wrong and what a correct version would be.

(a) To show that a problem X is NP-complete, it suffices to show that $X \in \text{NP}$ and $X \leq_p Y$ for some NP-complete problem Y .

Solution:

For X to be NP-complete, it has to be in NP and it has to be NP-hard. One way to show NP-hardness is to reduce another NP-hard problem to X (the NP-hardness then follows with the transitivity of reductions, see exercise 13.2 (a)). In this exercise the direction of the reduction is wrong: it should be $Y \leq_p X$ instead of $X \leq_p Y$.

(b) There is an NP-complete problem X that can be solved with an efficient deterministic algorithm, even if there is none for SAT.

Solution:

If there is such an algorithm for X , then SAT can be efficiently solved by reducing SAT to X . This is possible, since SAT $\in \text{NP}$ and since X is NP-hard. For every NP-complete problem X there are only two possible cases: either there are efficient algorithms for X and SAT ($P = \text{NP}$) or for none of them ($P \neq \text{NP}$).

(c) For every NP-hard problem X : $X \leq_p \text{SAT}$.

Solution:

There are problems that are NP-hard but not in NP. Since SAT is NP-hard, all problems $X \in \text{NP}$ have $X \leq_p \text{SAT}$. But NP-hard problems outside of NP cannot be reduced to SAT (otherwise they would be in NP).

(d) If there is a problem $X \in \text{P}$ such that $X \leq_p Y$ for some NP-complete problem Y then $P = \text{NP}$.

Solution:

Due to $\text{P} \subseteq \text{NP}$ it is true for *all* problems $X \in \text{P}$ and *all* NP-hard (and therefore also all NP-complete) problems Y that $X \leq_p Y$. Equality $P = \text{NP}$ would follow from $Y \leq_p X$ because then X was NP-complete and in P.