Theory of Computer Science

G. Roger University of Basel
Spring Term 2019 Computer Science

Exercise meeting 9 — Solutions

Exercise 9.1

Consider propositional formula ¢ = =(A V (=B A C)).

(a) Specify formula x.y as it is used in the polynomial reduction of SAT to 3SAT.
Solution:

Formula y.n over {Xa, Xp, X¢, Xo5, X(wBrC), X(Av(=BAC)), X—(Av(=Bac)) } is built from
the following subformulas:
(XA <~ A)
x5 = (Xg < B)
xc = (Xc < C)
X-B = (X-p < ~XB)
= (X-Bro) & (X-B A X())
(X(av(-Broy) ¢ (XaV X(-Brc)))
X—(Av(-BAC)) = (Xo(av(-Bac)) < 7 X(av(-BAC)))

X(~BAC) =

X(AV(-BAC)) =

Then
Xall = XA AXB AXB A X-B A X(=BAC) N X(AV(=BAC)) '\ X—(AV(=BAC));
always using the logically equivalent CNF formula that results from replacing the abbre-
viation <> with the corresponding formula, e.g. x(av(-Brc)) = (Xav(-Brc)) — (Xa V
XBrey)) N ((Xa V X-Bac)) = Xavao)) = (X avsao) V (Xa V X(-aac))) A
(=(Xa V X-Brc)) V X(av(-Brc)))-
(b) Z={A— F,B— T,C — T} is amodel of ¢. Specify the corresponding model of y.j.
Solution:
T'={Xs— FXp—=T,Xc—T,X g F,X_pgrc)— F,
Xav-Bacy) = F, Xav-Broy) = T}

Exercise 9.2
The decision problem SAT (satisfiability) is defined as follows:

Given: a propositional logic formula ¢

Question: Is ¢ satisfiable?

The general problem GENSAT (model generation) is defined as follows:

Given: a propositional logic formula ¢

Output: a model for ¢ or a message that none exists

Show that if there is a polynomial algorithm for SAT then there is a polynomial algorithm for
GENSAT.



Solution:

We specify an algorithm that solves GENSAT. It uses transformations ¢[v — T and ¢[v — F)
that replace every occurrence of v with a small valid (e.g. v V —w) and unsatisfiable (e.g. v A =)
formula, respectively. Then

e 7’ is a model of Yv — T] iff Z with Z(v) =T and Z(v") = Z'(v") for v’ # v is a model of ¥
and

e 7' is a model of ¥[v — F] iff T with Z(v) = F and Z(v') = Z'(¢v') for v # v

Moreover, if v is satisfiable and ¥[v — T is unsatisfiable then ¢ [v — F is satisfiable.

The algorithm proceeds as follows:

Call the algorithm for SAT on input . If it is unsatisfiable, output that it has no model.
Otherwise, we successively build a model Z for ¢, starting with ¢’ := ¢, as follows:

While there is still an unassigned variable v, call the SAT algorithm for ¢'[v +— T]. If the answer
is yes, set Z(v) = T and continue with ¢’ := ¢'[v — T, otherwise set Z(v) = F and continue with
¢ = [v— F).

Since the number of variables is bound by the size of ¢, there is only a polynomial number of
iterations. The size of the last formula ¢’ is at most k times larger than ¢ for some constant k
(k = 2 if we only count variable occurrences to determine the size). Hence, if every call to SAT is
possible in polynomial time then the overall runtime is polynomial.



