

Theory of Computer Science

G. Röger
Spring Term 2019

University of Basel
Computer Science

Exercise meeting 7 — Solutions

Exercise 7.1

Specify the Turing machine M_w encoded by:

$$w = 11110011001100110111010011110011010011001101001111001101110111001101110111001101$$

Is $w \in K$, i.e. does M_w started on w terminate?

Solution:

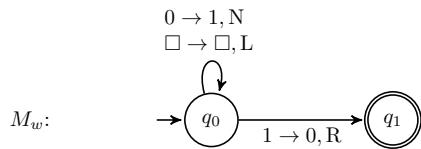
We first transform w into a word w' over $\Sigma' = \{0, 1, \#\}$, by scanning the word from the front and replacing each two symbols according to $\{11 \mapsto \#, 00 \mapsto 0, 01 \mapsto 1\}$:

$$w' = \#\#0\#0\#1\#10\#\#0\#10\#\#0\#1\#1\#0\#1$$

The word encodes three transitions:

- $\#\#0\#0\#1\#10: \delta(q_0, 0) = (q_0, 1, N)$
- $\#\#0\#10\#\#0\#10: \delta(q_0, \square) = (q_0, \square, L)$
- $\#\#0\#1\#1\#0: \delta(q_0, 1) = (q_1, 0, R)$

The start state is (per definition) q_0 . State q_1 is a terminating state because it does not have any outgoing transitions.



On input w TM M_w replaces the first 1 with a 0, moves the head one step to the right and goes into end state q_1 . As M_w terminates, we conclude that $w \in K$.

Exercise 7.2

Let A and B be two problems, and $A \leq B$. What can be said about

- B , if A is decidable?
- B , if A is semi-decidable?
- B , if A is undecidable?
- B , if A is not semi-decidable?
- A , if B is decidable?
- A , if B is semi-decidable?
- A , if B is undecidable?
- A , if B is not semi-decidable?

Solution:

- (a) nothing
- (b) nothing
- (c) B is undecidable
- (d) B is not semi-decidable
- (e) A is decidable
- (f) A is semi-decidable
- (g) nothing
- (h) nothing

Exercise 7.3

The *equivalence problem* EQUIVALENCE for general (type-0) grammars is defined as:

Given two general grammars G_1 and G_2 , is $\mathcal{L}(G_1) = \mathcal{L}(G_2)$?

Show that EQUIVALENCE is undecidable by reducing EMPTINESS to it. The *emptiness problem* EMPTINESS for general (type-0) grammars is defined as:

Given a general grammar G , is $\mathcal{L}(G) = \emptyset$?

(We show that EMPTINESS is undecidable in the next exercise sheet.)

Solution:

Let G_\emptyset be any grammar with $\mathcal{L}(G_\emptyset) = \emptyset$, e.g. a grammar without rules. Let f be the function $f(G) = (G, G_\emptyset)$ for all G .

$$\begin{aligned} G \in \text{EMPTINESS} &\text{ iff. } \mathcal{L}(G) = \emptyset \\ &\text{ iff. } \mathcal{L}(G) = \mathcal{L}(G_\emptyset) \\ &\text{ iff. } (G, G_\emptyset) \in \text{EQUIVALENCE} \\ &\text{ iff. } f(G) \in \text{EQUIVALENCE} \end{aligned}$$

The function f is total and computable and reduces EMPTINESS to EQUIVALENCE. Since EMPTINESS is undecidable, EQUIVALENCE must be undecidable as well.