

Theory of Computer Science

G. Röger
Spring Term 2019

University of Basel
Computer Science

Exercise meeting 6 — Solutions

Exercise 6.1

Consider a Turing machine with $E = \{q_E\}$, which encodes the function $f(a^n) = (ab)^n$ for $n \in \mathbb{N}_0$. Will the Turing machine stop on the following input? If so, what does the final configuration look like?

(i) a

Solution:

The TM stops with final configuration $\langle \square \dots \square, q_E, ab \square \dots \square \rangle$

(ii) aa

Solution:

The TM stops with final configuration $\langle \square \dots \square, q_E, abab \square \dots \square \rangle$

(iii) ε

Solution:

The TM stops with final configuration $\langle \square \dots \square, q_E, \square \square \dots \square \rangle$

(iv) ab

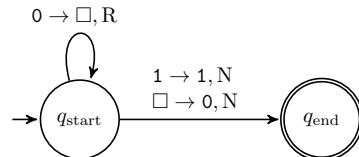
Solution:

The input is invalid. Hence, there are two possibilities: (1) The TM remains in an infinite loop, or (2), the TM stops in an invalid configuration, (Head not at the beginning of the output, \square in the middle of the output or symbols from $\Gamma \setminus \Sigma$ on the tape.)

Exercise 6.2

(a) Specify a Turing machine which removes a prefix of zeros from an input over $\Sigma = \{0, 1\}$. Let the result be 0 if the input consists of zeros only or is ε .

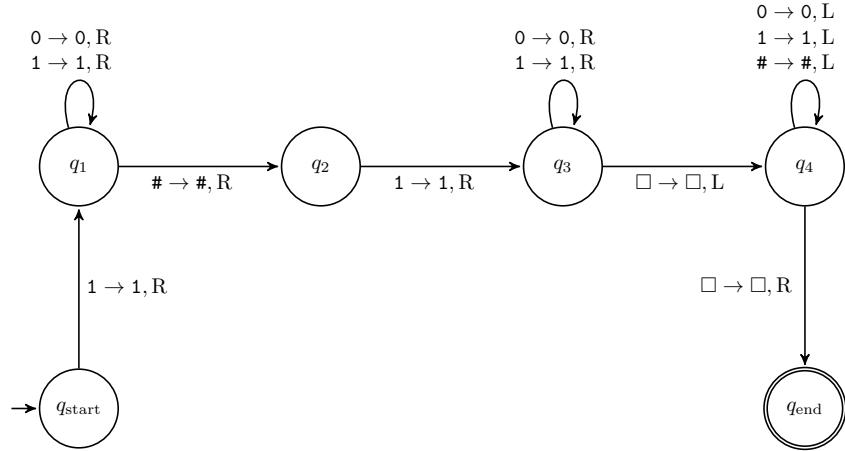
Solution:



(b) Specify a Turing machine which accepts an input over $\Sigma = \{0, 1, \#\}$ if and only if the input encodes two positive binary numbers, separated by a single $\#$ -sign.

Solution:

All missing transitions lead to an error state.



Exercise 6.3

Specify the transition diagram of a Turing machine which computes the *predecessor function* $\text{pred}_2 : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ over the natural numbers:

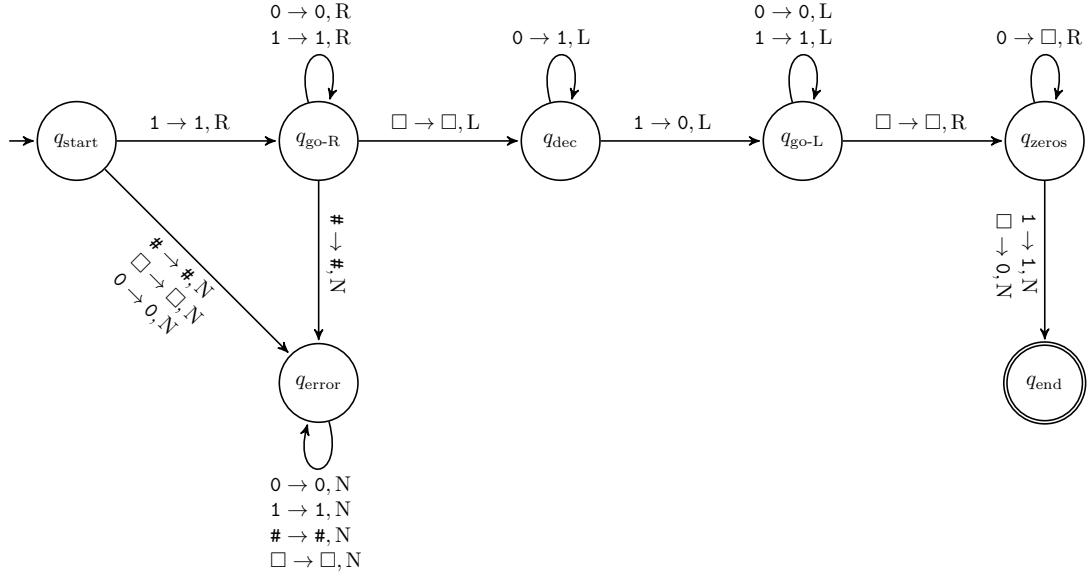
$$\text{pred}_2(n) = \begin{cases} n - 1 & \text{if } n \geq 1 \\ \text{undefined} & \text{if } n = 0 \end{cases}$$

Solution:

According to the definition of computing a numerical function with a DTM we need to specify a DTM M which computes the *encoding* $\text{pred}_2^{\text{code}} : \{0, 1, \#\}^* \rightarrow \{0, 1, \#\}^*$ of pred_2 ; this means it represents the function which computes $\text{bin}(\text{pred}_2(n))$ given input $\text{bin}(n)$.

Note: According to the definition of computability of functions in $\Sigma^* \rightarrow \Sigma^*$, this means, strictly speaking, that we also need to ensure that when an *invalid* input is given (for example input words such as $\#011\#\#$, $11\#10$, ε or 011), M must not stop in a valid configuration. We ensure this by leading M into an error state q_{error} if an invalid input is given, in which it will always stay.

We use the input alphabet $\Sigma = \{0, 1, \#\}$ as required by the definition of Turing-computability for numerical functions. As the tape alphabet we use $\Gamma = \Sigma \cup \{\square\}$, adding no additional symbols except the blank symbol. q_{start} is our start state and the only end state is q_{end} . The full definition of our DTM is thus $M = \langle Q, \Sigma, \Gamma, \delta, q_{\text{start}}, \square, \{q_{\text{end}}\} \rangle$ with $Q = \{q_{\text{start}}, z_{\text{error}}, q_{\text{go-R}}, q_{\text{dec}}, q_{\text{go-L}}, q_{\text{zeros}}, q_{\text{end}}\}$ and the transition function δ which is defined in the following state diagram. We omit transitions which cannot occur (like reading $\#$ in state $q_{\text{go-L}}$). These transitions can be chosen arbitrarily.



Our DTM works as follows:

- We start in start state q_{start} and test the first input symbol. There are two possibilities:
 - If the input word starts with 0, # or \square it is invalid. In these cases we move into the error state.
 - If the input word starts with 1, further processing is needed, which starts in state $q_{\text{go-R}}$.
- State $q_{\text{go-R}}$ should move to the right end of the input (for inputs of type 1...) and test whether the input is valid. If it is not valid (which is the case iff a # occurs), we move into the error state. Else we move into the state q_{dec} once we arrived at the right end of the input.
- When arriving q_{dec} the DTM checks the last digit of the input word. This state should decrement the number (reduce it by 1). To this end we replace 0 with 1 and move to the left until we reach a 1. This digit gets replaced by 0, finishing the decrementing.
- Afterwards we move to state $q_{\text{go-L}}$ and move the reading head to the left until we reach the start of the tape.
- Finally we need to remove potential leading zeroes and stop. The states q_{zeros} and q_{end} do exactly this.