

Theory of Computer Science

G. Röger
Spring Term 2019

University of Basel
Computer Science

Exercise meeting 5 — Solutions

Exercise 5.1

Specify a grammar G' in Chomsky normal form that generates the same language as the context-free grammar $G = \langle \Sigma, V, P, S \rangle$ with $\Sigma = \{a, b\}$, $V = \{S, X, Y, Z\}$ and the following rules in P :

$$\begin{array}{lllll} S \rightarrow \varepsilon & S \rightarrow XZ & S \rightarrow Y & X \rightarrow Z & X \rightarrow aYa \\ Y \rightarrow bb & Y \rightarrow bY & Z \rightarrow X & Z \rightarrow bZ & \end{array}$$

Solution:

Step 1: eliminate rules of type $A \rightarrow B$ (with $A, B \in V$)

First, we eliminate the cycle: $X \rightarrow Z$ and $Z \rightarrow X$.

$$\begin{array}{llll} S \rightarrow \varepsilon & S \rightarrow \mathbf{R} \mathbf{R} & S \rightarrow Y & \mathbf{R} \rightarrow aYa \\ Y \rightarrow bb & Y \rightarrow bY & \mathbf{R} \rightarrow b \mathbf{R} & \end{array}$$

Then we define a strict total order $<$ on the variables such that $A \rightarrow B \in P$ implies that $A < B$. The only such rule is $S \rightarrow Y$, so we can for example use $S < R < Y$. If we iterate from the largest to the smallest variable, we only need to do something when we reach S : replace $S \rightarrow Y$ with the corresponding direct rules.

$$\begin{array}{llll} S \rightarrow \varepsilon & S \rightarrow RR & S \rightarrow bb & S \rightarrow bY \\ R \rightarrow aYa & Y \rightarrow bb & Y \rightarrow bY & R \rightarrow bR \end{array}$$

Step 2: eliminate rules with a terminal symbol which are not of type $A \rightarrow a$.

$$\begin{array}{lllll} S \rightarrow \varepsilon & S \rightarrow RR & S \rightarrow BB & S \rightarrow BY & R \rightarrow AYA \\ Y \rightarrow BB & Y \rightarrow BY & R \rightarrow BR & A \rightarrow a & B \rightarrow b \end{array}$$

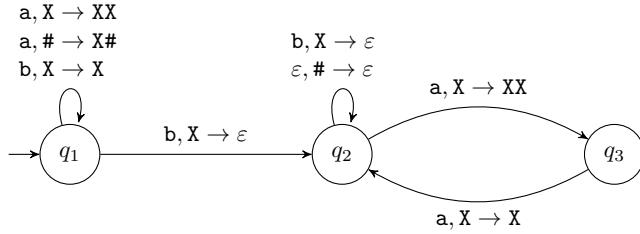
Step 3: eliminate rules of type $A \rightarrow B_1 B_2 \dots B_k$ with $k > 2$. We only have one such rule: $R \rightarrow AYA$.

The final result is the grammar $G' = \langle \Sigma, V', P', S \rangle$ with terminal alphabet $\Sigma = \{a, b\}$, variables $V' = \{S, R, Y, A, B, K\}$ and the following rules in P' :

$$\begin{array}{lllll} S \rightarrow \varepsilon & S \rightarrow RR & S \rightarrow BB & S \rightarrow BY & R \rightarrow AK \\ Y \rightarrow BB & Y \rightarrow BY & R \rightarrow BR & A \rightarrow a & B \rightarrow b \\ & & & & K \rightarrow YA \end{array}$$

Exercise 5.2

(a) Consider the PDA $M = \langle \{q_1, q_2, q_3\}, \{a, b\}, \{X, \#\}, \delta, q_1, \# \rangle$ with the following transition function δ :



Prove that M accepts the word `aababbaabb` by specifying a sequence of configurations as defined in chapter C5.

Solution:

The following configurations prove that M accepts the word.

$$\begin{aligned}
 & \langle q_1, aababbaabb, \# \rangle \vdash \langle q_1, ababbaabb, X\# \rangle \vdash \langle q_1, babbaabb, XX\# \rangle \vdash \langle q_1, abbaabb, XX\# \rangle \\
 & \vdash \langle q_1, bbaabb, XXX\# \rangle \vdash \langle q_2, baabb, XX\# \rangle \vdash \langle q_2, aabb, X\# \rangle \vdash \langle q_3, abb, XX\# \rangle \vdash \langle q_2, bb, XX\# \rangle \\
 & \vdash \langle q_2, b, X\# \rangle \vdash \langle q_2, \epsilon, \# \rangle \vdash \langle q_2, \epsilon, \epsilon \rangle
 \end{aligned}$$

(b) Specify a PDA that accepts the language $L = \{(ab)^n ca^n c \mid n \geq 0\}$ over $\Sigma = \{a, b, c\}$.

Solution:

The PDA $M = \langle \{q_1, q_2, q_3\}, \{a, b, c\}, \{N, \#\}, \delta, q_1, \# \rangle$ accepts L if δ is defined as follows.

