

Theory of Computer Science

G. Röger
Spring Term 2019

University of Basel
Computer Science

Exercise meeting 2 — Solutions

Exercise 2.1 (Formula Sets and Resolution)

Use the resolution calculus to show for the set of formulas

$$\text{KB} = \{(A \vee B), (\neg B \vee C)\}$$

that $\text{KB} \models (A \vee C)$.

Solution:

It holds that $\text{KB} \models (A \vee C)$ iff $\text{KB} \cup \{\neg(A \vee C)\}$ is unsatisfiable.

$\text{KB} \cup \{\neg(A \vee C)\}$ corresponds to the set of clauses $\Delta = \{\{A, B\}, \{\neg B, C\}, \{\neg A\}, \{\neg C\}\}$. We can derive \square as follows:

$$\begin{aligned} C_1 &= \{A, B\} \quad (\text{from } \Delta) \\ C_2 &= \{\neg B, C\} \quad (\text{from } \Delta) \\ C_3 &= \{\neg A\} \quad (\text{from } \Delta) \\ C_4 &= \{\neg C\} \quad (\text{from } \Delta) \\ C_5 &= \{B\} \quad (\text{from } C_1, C_3) \\ C_6 &= \{C\} \quad (\text{from } C_2, C_5) \\ C_7 &= \square \quad (\text{from } C_4, C_6) \end{aligned}$$

Hence, Δ is unsatisfiable.

Exercise 2.2 (Syntax of Predicate Logic)

Which of the following expressions are syntactically correct formulas or terms for the following signature \mathcal{S} ? Analyse also all subformulas and all subterms. For the formulas, also state what kind of formulas they are (atomic formula, conjunction, \dots).

$$\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$$

with $\mathcal{V} = \{x, y, z\}$, $\mathcal{C} = \{c\}$, $\mathcal{F} = \{f, g, h\}$, where $ar(f) = 3$, $ar(g) = ar(h) = 1$, and $\mathcal{P} = \{Q, R, S\}$, where $ar(Q) = 2$, $ar(R) = ar(S) = 1$.

(a) $f(x, y, z)$

Solution:

Term $f(x, y, z)$ with subterms x, y and z .

(b) $f(x, y)$

Solution:

Syntactically not correct because function symbol f has arity 3.

(c) $Q(x, y)$

Solution:

Atomic formula $Q(x, y)$ with subterms x and y .

(d) $(g(x) = R(y))$

Solution:

$(g(x) = R(y))$ is syntactically not correct, because $R(y)$ is a formula but the identity $(=)$ would require a term.

(e) $(g(x) = f(y, c, h(x)))$

Solution:

The formula $(g(x) = f(y, c, h(x)))$ is an identity with sub-terms $g(x)$ (with subterm x) and $f(y, c, h(x))$. The latter has subterms x (a variable), c (a constant) and $h(x)$ (a function term with variable x as subterm).

(f) $\forall c Q(c, x)$

Solution:

Syntactically not correct because the quantifier ranges over a constant, not a variable.

(g) $(R(x) \wedge \forall x S(x))$

Solution:

Formula $(R(x) \wedge \forall x S(x))$ is a conjunction with atomic sub-formula $R(x)$ (with sub-term x) and universal quantification $\forall x S(x)$. The latter formula has an (atomic) sub-formula $S(x)$ with term x .

(h) $(g(h(x)) \wedge R(x))$

Solution:

Syntactically not correct because a conjunction is build from formulas but $g(h(x))$ is a term.

(i) $(\forall x \exists y (g(x) = y) \vee (h(x) = c))$

Solution:

This is a disjunction with subformulas $\forall x \exists y (g(x) = y)$ and $(h(x) = c)$.

The universal quantification $\forall x \exists y (g(x) = y)$ has subformula $\exists y (g(x) = y)$, which is an existential quantification with (identity) subformula $(g(x) = y)$ build over terms $g(x)$ (with sub-term x) and y .

Formula $(h(x) = c)$ is an identity with sub-terms $h(x)$ and c .