

Theory of Computer Science

G. Röger
Spring Term 2019

University of Basel
Computer Science

Exercise meeting 1 — Solutions

Exercise 1.1 (Expressing Formulas in Propositional Logic)

Write down the following statements as propositional logic formulas. In order to do so, also define appropriate atomic propositions.

- “If the traffic light is red, then the car may not drive.”
- “The car may drive if and only if the traffic light is not red and there is no pedestrian on the street.”

Solution:

- $(\text{TrafficLightRed} \rightarrow \neg \text{CarMayDrive})$
- $(\text{CarMayDrive} \leftrightarrow (\neg \text{TrafficLightRed} \wedge \neg \text{Pedestrian}))$

Exercise 1.2 (Truth tables)

Let $A = \{X, Y, Z\}$ be a set of propositional variables and $\varphi = ((X \wedge Y) \rightarrow Z)$ be a propositional formula over A . Specify the truth table for φ .

Use the truth table to decide whether φ is satisfiable, unsatisfiable, valid and/or falsifiable.

Solution:

$\mathcal{I}(X)$	$\mathcal{I}(Y)$	$\mathcal{I}(Z)$	$\mathcal{I} \models (X \wedge Y)$	$\mathcal{I} \models ((X \wedge Y) \rightarrow Z)$
0	0	0	No	Yes
0	0	1	No	Yes
0	1	0	No	Yes
0	1	1	No	Yes
1	0	0	No	Yes
1	0	1	No	Yes
1	1	0	Yes	No
1	1	1	Yes	Yes

As $\{X \mapsto 0, Y \mapsto 0, Z \mapsto 0\} \models \varphi$ the formula is satisfiable and not unsatisfiable.

Due to $\{X \mapsto 1, Y \mapsto 1, Z \mapsto 0\} \not\models \varphi$ it is falsifiable and hence not valid.

Exercise 1.3 (Semantics of Propositional Logic)

Let $\varphi = ((X \wedge Y) \vee \neg X)$ be a propositional formula over $\{X, Y\}$. Consider interpretation $\mathcal{I} = \{X \mapsto 1, Y \mapsto 1\}$ for $\{X, Y\}$ and show by applying the semantics of propositional logic that \mathcal{I} is a model of φ (i.e. $\mathcal{I} \models \varphi$).

Solution:

Since $\mathcal{I}(X) = 1$, it holds that $\mathcal{I} \models X$. Analogously, we know from $\mathcal{I}(Y) = 1$ that $\mathcal{I} \models Y$. Using the semantics of the conjunction \wedge , we conclude that $\mathcal{I} \models (X \wedge Y)$. With the semantics of the disjunction \vee , we get that $\mathcal{I} \models ((X \wedge Y) \vee \neg X) = \varphi$ (this is independent on whether $\mathcal{I} \models \neg X$ or not, so it is unnecessary to show that indeed $\mathcal{I} \not\models \neg X$).

Exercise 1.4 (Properties of Propositional Logic Formulas)

Show *without* a truth table that $\varphi = (A \rightarrow (B \leftrightarrow C))$ is falsifiable. Is φ valid?

Solution:

We consider the following interpretation $\mathcal{I} = \{A \mapsto 1, B \mapsto 1, C \mapsto 0\}$.

Since $\mathcal{I}(C) = 0$, $\mathcal{I} \not\models C$ holds. Since $\mathcal{I}(B) = 1$, $\mathcal{I} \models B$ holds and thus $\mathcal{I} \not\models \neg B$ holds as well.

Together with the semantics for disjunction the above statements result in $\mathcal{I} \not\models (\neg B \vee C)$. By using the semantics for conjunction it follows that $\mathcal{I} \not\models ((\neg B \vee C) \wedge (\neg C \vee B))$. This can be abbreviated by $\mathcal{I} \not\models ((B \rightarrow C) \wedge (C \rightarrow B))$, or even shorter by $\mathcal{I} \not\models (B \leftrightarrow C)$ (1).

Since $\mathcal{I}(A) = 1$, $\mathcal{I} \models A$ holds. Using the semantics of negation it follows that $\mathcal{I} \not\models \neg A$ (2). Using the semantics for disjunction we can conclude from (1) and (2) that $\mathcal{I} \not\models (\neg A \vee (B \leftrightarrow C))$, which can be abbreviated by $\mathcal{I} \not\models (A \rightarrow (B \leftrightarrow C))$.

From this we can conclude that interpretation \mathcal{I} does not satisfy φ . Thus φ is falsifiable and also not valid.