

Theory of Computer Science

G. Röger
Spring Term 2019

University of Basel
Computer Science

Exercise meeting 6

Exercise 6.1

Consider a Turing machine with $E = \{q_E\}$, which encodes the function $f(a^n) = (ab)^n$ for $n \in \mathbb{N}_0$. Will the Turing machine stop on the following input? If so, what does the final configuration look like?

- (i) a
- (ii) aa
- (iii) ε
- (iv) ab

Exercise 6.2

- (a) Specify a Turing machine which removes a prefix of zeros from an input over $\Sigma = \{0, 1\}$. Let the result be 0 if the input consists of zeros only or is ε .
- (b) Specify a Turing machine which accepts an input over $\Sigma = \{0, 1, \#\}$ if and only if the input encodes two positive binary numbers, separated by a single #-sign.

Exercise 6.3

Specify the transition diagram of a Turing machine which computes the *predecessor function* $pred_2 : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ over the natural numbers:

$$pred_2(n) = \begin{cases} n - 1 & \text{if } n \geq 1 \\ \text{undefined} & \text{if } n = 0 \end{cases}$$