

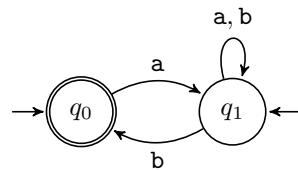
Theory of Computer Science

G. Röger
Spring Term 2019

University of Basel
Computer Science

Exercise meeting 4

Exercise 4.1


Consider the following regular expressions over the alphabet $\Sigma = \{0, 1\}$. For each regular expression, specify two words that are in the corresponding language and two words that are not in the corresponding language.

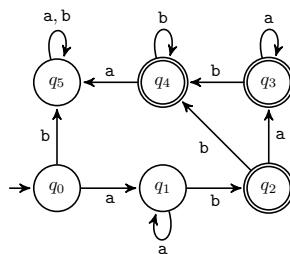
- (a) $0|1^*|1\emptyset 0$
- (b) $1^*(\epsilon|0)(01)^*$

Exercise 4.2

We consider regular languages over the alphabet $\Sigma = \{a, b\}$.

- (a) Provide all reasons why the following finite automaton is an NFA but not a DFA.

- (b) Specify a deterministic finite automaton that accepts the language of all words over Σ with an even number of bs.


Exercise 4.3

Are the following languages over $\Sigma = \{a, b, c, d\}$ regular? If so, prove it by specifying a regular expression which describes the language. If not, prove it with help of the Pumping-Lemma.

- (a) $L_1 = \{ab^n c^m d^2 \mid n, m \in \mathbb{N}_0\}$
- (b) $L_2 = \{w \in \{a, b\}^* \mid w \text{ contains as many } as \text{ as } bs\}$

Exercise 4.4

Consider the following DFA M :

- (a) Specify a regular expression that describes $\mathcal{L}(M)$.
- (b) Specify the state diagram of an NFA with at most 4 states that accepts the same language.