Foundations of Artificial Intelligence
45. AlphaGo and Outlook

Malte Helmert

University of Basel

May 22, 2019



Board Games: Overview

chapter overview:

e 40.
e 41.
e 42,
e 43.
e 44,
@ 45,

Introduction and State of the Art

Minimax Search and Evaluation Functions
Alpha-Beta Search

Monte-Carlo Tree Search: Introduction
Monte-Carlo Tree Search: Advanced Topics
AlphaGo and Outlook



Introduction



Introduction
oeo

Go

@ more than 2500 years old

@ long considered the hardest
classical board game for computers

@ played on 19 x 19 board

@ simple rules:
o players alternately place a stone
e surrounded stones are removed
o player with more territory
plus captured stones wins




Introduction
ooe

Monte-Carlo Methods in Go: Brief History

@ 1993: Briigmann applies Monte-Carlo methods to Go

@ 2006: MoGo by Gelly et al. is the first Go algorithm
based on Monte-Carlo Tree Search

@ 2008: Coulom’s CrazyStone player beats 4 dan professional
Kaori Aobai with handicap of 8 stones

@ 2012: Qjima’'s Zen player beats 9 dan professional
Takemiya Masaki with handicap of 4 stones

@ 2015: AlphaGo beats the European Go champion Fan Hui,
a 2 dan professional, 5-0

@ 2016: AlphaGo beats one of the world's best Go players,
9 dan professional Lee Sedol, with 4-1



MCTS in AlphaGo



MCTS
0®000

MCTS in AlphaGo: Overview

@ based on Monte-Carlo Tree Search
@ search nodes annotated with:
o utility estimate (n)
e visit counter N(n)
e a (static) prior probability pg(n) from SL policy network



MCTS
00®00

MCTS in AlphaGo: Tree Policy

o selects successor n that maximizes i(n) + B(n)

@ computes bonus term B(n) for each node proportionally to

prior and inverse number of visits as B(n) %

~ rewards less frequently explored nodes
(as in UCBL, but trailing off more quickly)



MCTS
000®0

MCTS in AlphaGo: Simulation Stage

e Utility of an iteration is made up of two parts:

o the result of a simulation ugm(n) with a default policy
from a rollout policy network
o a heuristic value h(n) from a value network

@ combined via a mixing parameter A € [0, 1]
by setting the utility of the iteration to

A+ Usim(n) + (L = X) - h(n)

@ mixing parameter in final version is A = 0.5, which indicates
that both parts are important for playing strength



MCTS
[elelelel ]

MCTS in AlphaGo: Other

expansion phase:
@ ignores restriction that unvisited successors must be created

finally selected move:

@ move to child of root that has been visited most often
rather than the one with highest utility estimate



Neural Networks



Neural Networks
0®0000000000

Neural Networks in AlphaGo

AlphaGo computes four neural networks:

@ supervised learning (SL) policy network
~ for prior probabilities

@ rollout policy network
~> for default policy in simulation phase

e reinforcement learning (RL) policy network
(intermediate step only)

@ value network
~> for heuristic in simulation phase



Neural Networks
00®000000000

Neural Networks

@ used to approximate an unknown function
o layered graph of three types of nodes:
e input nodes
e hidden nodes
e output nodes
@ iteratively learns function by adapting weights
of connections between nodes






Neural Networks
[e]elele] Yelelelelolole}

SL Policy Network: Architecture

input nodes:
@ the current position
o (limited) move history

e additional features (e.g., related to ladders)

hidden layer:
@ several convolutional layers:

e combine local information
~~ only partial connections between layers
o weights are shared between connections of the same type

@ final linear softmax layer
e converts weights to probabilities

output nodes: a probability distribution over all legal moves



Neural Networks
00000®000000

SL Policy Network: Convolutional Layers

elelelelelolelele 00 e 000 0 el0l0
L S BSOS DL
0]0:10:01070:0.:076,0.0.:0,070.0:0,0,0.0
ofoleloleloleleleleletotetotetetotets

O

0,0:0,0:0,0,0.0,0.0,0,0,0,0,0
slelelelolototeteleteletelels

T TERRIIILLILLEIIIDS
8 S BB AAADDDDODDDHY e e e eterstnieesies
IR IIILLIL LIRS oleleteloteletolotolotetotete

O

g 000000020
Slotelolelelolelolelolelotelelotelots
Slelololelelelelotelelelototeletetets
Sleteletoleleteleteleteletteletelets

Q

BB ODAOOBAODDA
BB OOBAODODD
BB OB OOBAODDAD
BB OOBAODODD

S ASAEAEL S ABSEEL Q
0,0.0.0:0:0.0.0.0:0.0.0:6.0.6.0.0.0.0 Pttt te b v Nt N b %%
L A S EBBAEEEEEEEAREEE 010.0:0:0:0:0,0:0,0,0:6.0:0:6,
010.0,6:0.0.6.6.0.0:0.6,6.0:0:6,6.0.0 ettt N b N b b v by

OIS RO CERD0OO00000

Q

B OD A ODBAODDDD
st tat e tatalotets
SIS

450 3
FILIFTLIILIIZLLLLIRE
>§¢ slelelotelelelels
Jelefetelelelels

input layer 1st hidden layer



Neural Networks
00000®000000

SL Policy Network: Convolutional Layers

elelelelelolelele 00 e 000 0 el0l0
L S BSOS DL
0]0:10:01070:0.:076,0.0.:0,070.0:0,0,0.0
ofoleloleloleleleleletotetotetetotets

O

0,0:0,0:0,0,0.0,0.0,0,0,0,0,0
slelelelolototeteleteletelels

T TERRIIILLILLEIIIDS
8 S BB AAADDDDODDDHY e e e eterstnieesies
IR IIILLIL LIRS oleleteloteletolotolotetotete

O

g 000000020
Slotelolelelolelolelolelotelelotelots
Slelololelelelelotelelelototeletetets
Sleteletoleleteleteleteletteletelets
slotelolleleleloteloleletlelotelets
Sleteletoleleteleteletelatteletelets
slolelololeleleloteloleletelelotelets
TEE TSNttt lotetetetelets
3333 slslelslelelotelotelototele

Q

BB ODAOOBAODDA
BB OOBAODODD
BB OB OOBAODDAD
BB OOBAODODD
sttt tetatalotets
BB ODBAODDDD
sttt tetatalotets
DSBS OB
sl tatatalotatalots
S BEBBBEEBEBER

4444 SSOOISISISISISIIIIIcH:
3B8BGOONDDIIIDAOODN
eleleleleletotetetete et e tototets

input layer 1st hidden layer



Neural Networks
000000®00000

SL Policy Network

@ uses 30 million positions and selected moves
of strong human players from KGS Go Server

@ supervised learning: network learns to match given inputs to
given outputs (i.e., the given position to the selected move)

@ most “human-like” part of AlphaGo:
aims to replicate human choices, not to win

e prediction accuracy: 57%

@ 3 ms per query

well-informed results with variance ~~ good for priors



Neural Networks
000000080000

Rollout Policy Network: Architecture

input nodes:

@ only small set of features from small window around own
and opponent’s previous move

@ does not look at the entire 19 x 19 board

hidden layer: a single linear softmax layer

output nodes: a probability distribution over all legal moves



Neural Networks
000000008000

Rollout Policy Network

@ uses supervised learning with the same data
as the SL policy network

@ lower prediction accuracy: 24.2%
@ but allows fast queries: just 2 us
(more than 1000 times faster than SL policy network)

reasonably informed yet cheap to compute
~ well-suited as default policy



Neural Networks
000000000800

Value Network: RL Policy Network

first create sequence of RL policy networks
with reinforcement learning

@ initialize first RL policy network to SL policy network

@ in each iteration, pick a former RL policy network uniformly
randomly ~~ prevents overfitting to the current policy
@ play with the current network against the picked one:

e compute the probability distribution over all legal moves
for the current position

e sample a move according to the probabilities

e play that move

e repeat until a final position is reached

@ create new RL policy network by updating weights
in the direction that maximizes expected outcome



Neural Networks
000000000080

Value Network: Architecture

then transform RL policy network to value network

@ input nodes: same as in SL and RL policy network

@ hidden layers: similar to RL policy network

@ output node: utility estimate that approximates u*

~> the value network computes a heuristic



Value

well

Neural Networks
00000000000e

Network

using position-outcome pairs from KGS Server
leads to overfitting

using too many positions from same game introduces bias

create a new dataset with 30 million self-play games
of standalone RL policy network against itself

each game only introduces a single position-outcome pair
(chosen randomly) into the new dataset ~~ only minimal
overfitting

slightly worse accuracy than using RL Policy Network
as default policy

but 15000 times faster

informed and fast ~» good heuristic



Summary



Summary
oeo

Summary: This Chapter

@ AlphaGo combines Monte-Carlo Tree Search
with neural networks

@ uses priors to guide selection strategy
@ priors are learned from human players

@ learns a reasonably informed yet cheap to compute
default policy

@ simulation steps are augmented with utility estimates,
which are learned from humans and intensive self-play



Summary
ooe

Summary: Board Games

@ board games have traditionally been important in Al research

@ in most board games, computers are able to beat
human experts

@ optimal strategy can be computed with minimax
@ alpha-beta pruning often speeds up minimax significantly
@ introduction of Monte-Carlo Tree Search
led to tremendous progress in several games
@ combination with neural networks allowed to beat
top human players in Go



	Introduction
	

	MCTS in AlphaGo
	

	Neural Networks
	

	Summary
	


