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Go

@ more than 2500 years old

@ long considered the hardest
classical board game for computers

@ played on 19 x 19 board

@ simple rules:
o players alternately place a stone
e surrounded stones are removed
o player with more territory
plus captured stones wins
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Monte-Carlo Methods in Go: Brief History

@ 1993: Briigmann applies Monte-Carlo methods to Go

@ 2006: MoGo by Gelly et al. is the first Go algorithm
based on Monte-Carlo Tree Search

@ 2008: Coulom’s CrazyStone player beats 4 dan professional
Kaori Aobai with handicap of 8 stones

@ 2012: Qjima’'s Zen player beats 9 dan professional
Takemiya Masaki with handicap of 4 stones

@ 2015: AlphaGo beats the European Go champion Fan Hui,
a 2 dan professional, 5-0

@ 2016: AlphaGo beats one of the world's best Go players,
9 dan professional Lee Sedol, with 4-1
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MCTS in AlphaGo: Overview

@ based on Monte-Carlo Tree Search
@ search nodes annotated with:
o utility estimate (n)
e visit counter N(n)
e a (static) prior probability pg(n) from SL policy network
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MCTS in AlphaGo: Tree Policy

o selects successor n that maximizes i(n) + B(n)

@ computes bonus term B(n) for each node proportionally to

prior and inverse number of visits as B(n) %

~ rewards less frequently explored nodes
(as in UCBL, but trailing off more quickly)
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MCTS in AlphaGo: Simulation Stage

e Utility of an iteration is made up of two parts:

o the result of a simulation ugm(n) with a default policy
from a rollout policy network
o a heuristic value h(n) from a value network

@ combined via a mixing parameter A € [0, 1]
by setting the utility of the iteration to

A+ Usim(n) + (L = X) - h(n)

@ mixing parameter in final version is A = 0.5, which indicates
that both parts are important for playing strength
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MCTS in AlphaGo: Other

expansion phase:
@ ignores restriction that unvisited successors must be created

finally selected move:

@ move to child of root that has been visited most often
rather than the one with highest utility estimate
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Neural Networks in AlphaGo

AlphaGo computes four neural networks:

@ supervised learning (SL) policy network
~ for prior probabilities

@ rollout policy network
~> for default policy in simulation phase

e reinforcement learning (RL) policy network
(intermediate step only)

@ value network
~> for heuristic in simulation phase
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Neural Networks

@ used to approximate an unknown function
o layered graph of three types of nodes:
e input nodes
e hidden nodes
e output nodes
@ iteratively learns function by adapting weights
of connections between nodes
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SL Policy Network: Architecture

input nodes:
@ the current position
o (limited) move history

e additional features (e.g., related to ladders)

hidden layer:
@ several convolutional layers:

e combine local information
~~ only partial connections between layers
o weights are shared between connections of the same type

@ final linear softmax layer
e converts weights to probabilities

output nodes: a probability distribution over all legal moves
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SL Policy Network: Convolutional Layers
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SL Policy Network: Convolutional Layers
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SL Policy Network

@ uses 30 million positions and selected moves
of strong human players from KGS Go Server

@ supervised learning: network learns to match given inputs to
given outputs (i.e., the given position to the selected move)

@ most “human-like” part of AlphaGo:
aims to replicate human choices, not to win

e prediction accuracy: 57%

@ 3 ms per query

well-informed results with variance ~~ good for priors
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Rollout Policy Network: Architecture

input nodes:

@ only small set of features from small window around own
and opponent’s previous move

@ does not look at the entire 19 x 19 board

hidden layer: a single linear softmax layer

output nodes: a probability distribution over all legal moves
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Rollout Policy Network

@ uses supervised learning with the same data
as the SL policy network

@ lower prediction accuracy: 24.2%
@ but allows fast queries: just 2 us
(more than 1000 times faster than SL policy network)

reasonably informed yet cheap to compute
~ well-suited as default policy
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Value Network: RL Policy Network

first create sequence of RL policy networks
with reinforcement learning

@ initialize first RL policy network to SL policy network

@ in each iteration, pick a former RL policy network uniformly
randomly ~~ prevents overfitting to the current policy
@ play with the current network against the picked one:

e compute the probability distribution over all legal moves
for the current position

e sample a move according to the probabilities

e play that move

e repeat until a final position is reached

@ create new RL policy network by updating weights
in the direction that maximizes expected outcome
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Value Network: Architecture

then transform RL policy network to value network

@ input nodes: same as in SL and RL policy network

@ hidden layers: similar to RL policy network

@ output node: utility estimate that approximates u*

~> the value network computes a heuristic
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Network

using position-outcome pairs from KGS Server
leads to overfitting

using too many positions from same game introduces bias

create a new dataset with 30 million self-play games
of standalone RL policy network against itself

each game only introduces a single position-outcome pair
(chosen randomly) into the new dataset ~~ only minimal
overfitting

slightly worse accuracy than using RL Policy Network
as default policy

but 15000 times faster

informed and fast ~» good heuristic
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Summary: This Chapter

@ AlphaGo combines Monte-Carlo Tree Search
with neural networks

@ uses priors to guide selection strategy
@ priors are learned from human players

@ learns a reasonably informed yet cheap to compute
default policy

@ simulation steps are augmented with utility estimates,
which are learned from humans and intensive self-play
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Summary: Board Games

@ board games have traditionally been important in Al research

@ in most board games, computers are able to beat
human experts

@ optimal strategy can be computed with minimax
@ alpha-beta pruning often speeds up minimax significantly
@ introduction of Monte-Carlo Tree Search
led to tremendous progress in several games
@ combination with neural networks allowed to beat
top human players in Go
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