
Foundations of Artificial Intelligence
45. AlphaGo and Outlook

Malte Helmert

University of Basel

May 22, 2019

Introduction MCTS Neural Networks Summary

Board Games: Overview

chapter overview:

40. Introduction and State of the Art

41. Minimax Search and Evaluation Functions

42. Alpha-Beta Search

43. Monte-Carlo Tree Search: Introduction

44. Monte-Carlo Tree Search: Advanced Topics

45. AlphaGo and Outlook

Introduction MCTS Neural Networks Summary

Introduction

Introduction MCTS Neural Networks Summary

Go

more than 2500 years old

long considered the hardest
classical board game for computers

played on 19× 19 board

simple rules:

players alternately place a stone
surrounded stones are removed
player with more territory
plus captured stones wins

Introduction MCTS Neural Networks Summary

Monte-Carlo Methods in Go: Brief History

1993: Brügmann applies Monte-Carlo methods to Go

2006: MoGo by Gelly et al. is the first Go algorithm
based on Monte-Carlo Tree Search

2008: Coulom’s CrazyStone player beats 4 dan professional
Kaori Aobai with handicap of 8 stones

2012: Ojima’s Zen player beats 9 dan professional
Takemiya Masaki with handicap of 4 stones

2015: AlphaGo beats the European Go champion Fan Hui,
a 2 dan professional, 5–0

2016: AlphaGo beats one of the world’s best Go players,
9 dan professional Lee Sedol, with 4–1

Introduction MCTS Neural Networks Summary

MCTS in AlphaGo

Introduction MCTS Neural Networks Summary

MCTS in AlphaGo: Overview

based on Monte-Carlo Tree Search

search nodes annotated with:

utility estimate û(n)
visit counter N(n)
a (static) prior probability p0(n) from SL policy network

Introduction MCTS Neural Networks Summary

MCTS in AlphaGo: Tree Policy

selects successor n that maximizes û(n) + B(n)

computes bonus term B(n) for each node proportionally to

prior and inverse number of visits as B(n) ∝ p0(n)
1+N(n)

 rewards less frequently explored nodes

(as in UCB1, but trailing off more quickly)

Introduction MCTS Neural Networks Summary

MCTS in AlphaGo: Simulation Stage

Utility of an iteration is made up of two parts:

the result of a simulation usim(n) with a default policy
from a rollout policy network
a heuristic value h(n) from a value network

combined via a mixing parameter λ ∈ [0, 1]
by setting the utility of the iteration to

λ · usim(n) + (1− λ) · h(n)

mixing parameter in final version is λ = 0.5, which indicates
that both parts are important for playing strength

Introduction MCTS Neural Networks Summary

MCTS in AlphaGo: Other

expansion phase:

ignores restriction that unvisited successors must be created

finally selected move:

move to child of root that has been visited most often
rather than the one with highest utility estimate

Introduction MCTS Neural Networks Summary

Neural Networks

Introduction MCTS Neural Networks Summary

Neural Networks in AlphaGo

AlphaGo computes four neural networks:

supervised learning (SL) policy network
 for prior probabilities

rollout policy network
 for default policy in simulation phase

reinforcement learning (RL) policy network
(intermediate step only)

value network
 for heuristic in simulation phase

Introduction MCTS Neural Networks Summary

Neural Networks

used to approximate an unknown function

layered graph of three types of nodes:

input nodes
hidden nodes
output nodes

iteratively learns function by adapting weights
of connections between nodes

Introduction MCTS Neural Networks Summary

Neural Networks: Example

input layer 1st hidden layer 2nd hidden layer output layer

Introduction MCTS Neural Networks Summary

SL Policy Network: Architecture

input nodes:

the current position

(limited) move history

additional features (e.g., related to ladders)

hidden layer:

several convolutional layers:

combine local information
 only partial connections between layers
weights are shared between connections of the same type

final linear softmax layer

converts weights to probabilities

output nodes: a probability distribution over all legal moves

Introduction MCTS Neural Networks Summary

SL Policy Network: Convolutional Layers

input layer 1st hidden layer

Introduction MCTS Neural Networks Summary

SL Policy Network: Convolutional Layers

input layer 1st hidden layer

Introduction MCTS Neural Networks Summary

SL Policy Network

uses 30 million positions and selected moves
of strong human players from KGS Go Server

supervised learning: network learns to match given inputs to
given outputs (i.e., the given position to the selected move)

most “human-like” part of AlphaGo:
aims to replicate human choices, not to win

prediction accuracy: 57%

3 ms per query

well-informed results with variance good for priors

Introduction MCTS Neural Networks Summary

Rollout Policy Network: Architecture

input nodes:

only small set of features from small window around own
and opponent’s previous move

does not look at the entire 19× 19 board

hidden layer: a single linear softmax layer

output nodes: a probability distribution over all legal moves

Introduction MCTS Neural Networks Summary

Rollout Policy Network

uses supervised learning with the same data
as the SL policy network

lower prediction accuracy: 24.2%

but allows fast queries: just 2 µs
(more than 1000 times faster than SL policy network)

reasonably informed yet cheap to compute
 well-suited as default policy

Introduction MCTS Neural Networks Summary

Value Network: RL Policy Network

first create sequence of RL policy networks
with reinforcement learning

initialize first RL policy network to SL policy network

in each iteration, pick a former RL policy network uniformly
randomly prevents overfitting to the current policy

play with the current network against the picked one:

compute the probability distribution over all legal moves
for the current position
sample a move according to the probabilities
play that move
repeat until a final position is reached

create new RL policy network by updating weights
in the direction that maximizes expected outcome

Introduction MCTS Neural Networks Summary

Value Network: Architecture

then transform RL policy network to value network

input nodes: same as in SL and RL policy network

hidden layers: similar to RL policy network

output node: utility estimate that approximates u∗

 the value network computes a heuristic

Introduction MCTS Neural Networks Summary

Value Network

using position-outcome pairs from KGS Server
leads to overfitting

using too many positions from same game introduces bias

create a new dataset with 30 million self-play games
of standalone RL policy network against itself

each game only introduces a single position-outcome pair
(chosen randomly) into the new dataset only minimal
overfitting

slightly worse accuracy than using RL Policy Network
as default policy

but 15000 times faster

well informed and fast good heuristic

Introduction MCTS Neural Networks Summary

Summary

Introduction MCTS Neural Networks Summary

Summary: This Chapter

AlphaGo combines Monte-Carlo Tree Search
with neural networks

uses priors to guide selection strategy

priors are learned from human players

learns a reasonably informed yet cheap to compute
default policy

simulation steps are augmented with utility estimates,
which are learned from humans and intensive self-play

Introduction MCTS Neural Networks Summary

Summary: Board Games

board games have traditionally been important in AI research

in most board games, computers are able to beat
human experts

optimal strategy can be computed with minimax

alpha-beta pruning often speeds up minimax significantly

introduction of Monte-Carlo Tree Search
led to tremendous progress in several games

combination with neural networks allowed to beat
top human players in Go

	Introduction
	

	MCTS in AlphaGo
	

	Neural Networks
	

	Summary
	

