

# Foundations of Artificial Intelligence

## 45. AlphaGo and Outlook

Malte Helmert

University of Basel

May 22, 2019

# Foundations of Artificial Intelligence

May 22, 2019 — 45. AlphaGo and Outlook

## 45.1 Introduction

## 45.2 MCTS in AlphaGo

## 45.3 Neural Networks

## 45.4 Summary

# Board Games: Overview

chapter overview:

- ▶ 40. Introduction and State of the Art
- ▶ 41. Minimax Search and Evaluation Functions
- ▶ 42. Alpha-Beta Search
- ▶ 43. Monte-Carlo Tree Search: Introduction
- ▶ 44. Monte-Carlo Tree Search: Advanced Topics
- ▶ 45. AlphaGo and Outlook

## 45.1 Introduction

## Go

- ▶ more than 2500 years old
- ▶ long considered the hardest classical board game for computers
- ▶ played on  $19 \times 19$  board
- ▶ simple rules:
  - ▶ players alternately place a stone
  - ▶ surrounded stones are removed
  - ▶ player with more territory plus captured stones wins



## Monte-Carlo Methods in Go: Brief History

- ▶ 1993: Brügmann applies Monte-Carlo methods to Go
- ▶ 2006: MoGo by Gelly et al. is the first Go algorithm based on Monte-Carlo Tree Search
- ▶ 2008: Coulom's CrazyStone player beats 4 dan professional Kaori Aobai with handicap of 8 stones
- ▶ 2012: Ojima's Zen player beats 9 dan professional Takemiya Masaki with handicap of 4 stones
- ▶ 2015: AlphaGo beats the European Go champion Fan Hui, a 2 dan professional, 5–0
- ▶ 2016: AlphaGo beats one of the world's best Go players, 9 dan professional Lee Sedol, with 4–1

## 45.2 MCTS in AlphaGo

## MCTS in AlphaGo: Overview

- ▶ based on Monte-Carlo Tree Search
- ▶ search nodes annotated with:
  - ▶ utility estimate  $\hat{u}(n)$
  - ▶ visit counter  $N(n)$
  - ▶ a (static) prior probability  $p_0(n)$  from SL policy network

## MCTS in AlphaGo: Tree Policy

- ▶ selects successor  $n$  that maximizes  $\hat{u}(n) + B(n)$
- ▶ computes bonus term  $B(n)$  for each node **proportionally to prior and inverse number of visits** as  $B(n) \propto \frac{p_0(n)}{1+N(n)}$

~~ rewards less frequently explored nodes  
(as in UCB1, but trailing off more quickly)

## MCTS in AlphaGo: Simulation Stage

- ▶ Utility of an iteration is made up of two parts:
  - ▶ the result of a simulation  $u_{\text{sim}}(n)$  with a default policy from a **rollout policy network**
  - ▶ a heuristic value  $h(n)$  from a **value network**
- ▶ combined via a **mixing parameter**  $\lambda \in [0, 1]$  by setting the utility of the iteration to

$$\lambda \cdot u_{\text{sim}}(n) + (1 - \lambda) \cdot h(n)$$

- ▶ mixing parameter in final version is  $\lambda = 0.5$ , which indicates that **both parts are important** for playing strength

## MCTS in AlphaGo: Other

expansion phase:

- ▶ ignores restriction that unvisited successors must be created

finally selected move:

- ▶ move to child of root that has been **visited most often** rather than the one with highest utility estimate

## 45.3 Neural Networks

## Neural Networks in AlphaGo

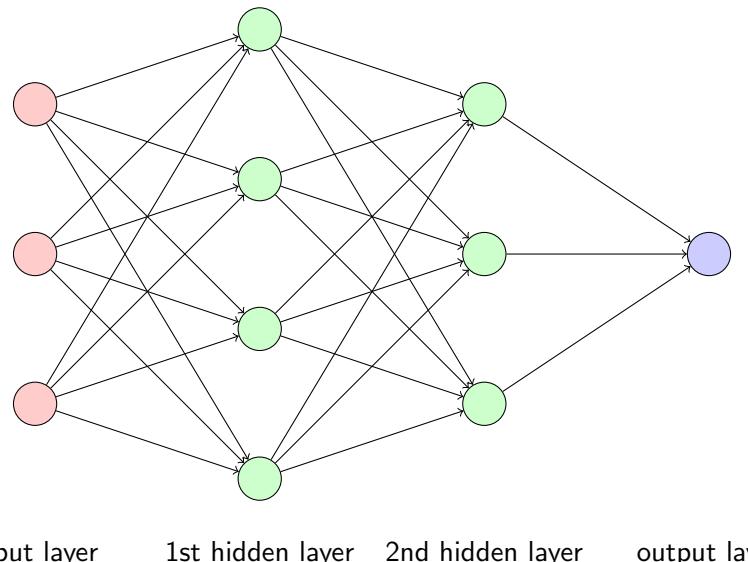
AlphaGo computes four neural networks:

- ▶ supervised learning (SL) policy network
  - ~~ for **prior probabilities**
- ▶ rollout policy network
  - ~~ for **default policy** in simulation phase
- ▶ reinforcement learning (RL) policy network
  - (intermediate step only)
- ▶ value network
  - ~~ for **heuristic** in simulation phase

## Neural Networks

- ▶ used to approximate an unknown function
- ▶ layered graph of three types of nodes:
  - ▶ input nodes
  - ▶ hidden nodes
  - ▶ output nodes
- ▶ iteratively learns function by adapting **weights** of connections between nodes

## Neural Networks: Example



## SL Policy Network: Architecture

input nodes:

- ▶ the current **position**
- ▶ (limited) **move history**
- ▶ additional **features** (e.g., related to ladders)

hidden layer:

- ▶ several **convolutional layers**:
  - ▶ combine local information
    - ~~ only **partial connections** between layers
  - ▶ weights are shared between connections of the same type
- ▶ final **linear softmax** layer
  - ▶ converts weights to **probabilities**

output nodes: a **probability distribution** over all legal moves



## Value Network: RL Policy Network

first create sequence of RL policy networks with **reinforcement learning**

- ▶ **initialize** first RL policy network to SL policy network
- ▶ in each iteration, **pick a former RL policy network** uniformly randomly  $\rightsquigarrow$  prevents overfitting to the current policy
- ▶ play with the current network against the picked one:
  - ▶ **compute the probability distribution** over all legal moves for the current position
  - ▶ **sample** a move according to the probabilities
  - ▶ **play that move**
  - ▶ repeat until a final position is reached
- ▶ create new RL policy network by **updating weights** in the direction that maximizes expected outcome

## Value Network: Architecture

then transform RL policy network to value network

- ▶ input nodes: same as in SL and RL policy network
- ▶ hidden layers: similar to RL policy network
- ▶ output node: **utility estimate** that approximates  $u^*$   
 $\rightsquigarrow$  the value network computes a heuristic

## Value Network

- ▶ using position-outcome pairs from KGS Server leads to **overfitting**
- ▶ using too many positions from same game introduces bias
- ▶ create a **new dataset** with 30 million self-play games of standalone RL policy network against itself
- ▶ each game only introduces **a single position-outcome pair** (chosen randomly) into the new dataset  $\rightsquigarrow$  only **minimal overfitting**
- ▶ slightly worse accuracy than using RL Policy Network as default policy
- ▶ but **15000 times faster**

well informed and fast  $\rightsquigarrow$  good **heuristic**

## 45.4 Summary

## Summary: This Chapter

- ▶ AlphaGo combines Monte-Carlo Tree Search with **neural networks**
- ▶ uses **priors** to guide selection strategy
- ▶ priors are learned from **human players**
- ▶ learns a reasonably informed yet **cheap to compute** default policy
- ▶ simulation steps are augmented with **utility estimates**, which are learned from humans and intensive self-play

## Summary: Board Games

- ▶ board games have traditionally been important in AI research
- ▶ in most board games, computers are able to beat human experts
- ▶ **optimal strategy** can be computed with minimax
- ▶ alpha-beta pruning often **speeds up minimax** significantly
- ▶ introduction of Monte-Carlo Tree Search led to **tremendous progress** in several games
- ▶ combination with **neural networks** allowed to beat top human players in Go