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Go

I more than 2500 years old

I long considered the hardest
classical board game for computers

I played on 19× 19 board
I simple rules:

I players alternately place a stone
I surrounded stones are removed
I player with more territory

plus captured stones wins
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Monte-Carlo Methods in Go: Brief History

I 1993: Brügmann applies Monte-Carlo methods to Go

I 2006: MoGo by Gelly et al. is the first Go algorithm
based on Monte-Carlo Tree Search

I 2008: Coulom’s CrazyStone player beats 4 dan professional
Kaori Aobai with handicap of 8 stones

I 2012: Ojima’s Zen player beats 9 dan professional
Takemiya Masaki with handicap of 4 stones

I 2015: AlphaGo beats the European Go champion Fan Hui,
a 2 dan professional, 5–0

I 2016: AlphaGo beats one of the world’s best Go players,
9 dan professional Lee Sedol, with 4–1
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45.2 MCTS in AlphaGo
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MCTS in AlphaGo: Overview

I based on Monte-Carlo Tree Search
I search nodes annotated with:

I utility estimate û(n)
I visit counter N(n)
I a (static) prior probability p0(n) from SL policy network
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MCTS in AlphaGo: Tree Policy

I selects successor n that maximizes û(n) + B(n)

I computes bonus term B(n) for each node proportionally to

prior and inverse number of visits as B(n) ∝ p0(n)
1+N(n)

 rewards less frequently explored nodes

 

(as in UCB1, but trailing off more quickly)
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MCTS in AlphaGo: Simulation Stage

I Utility of an iteration is made up of two parts:
I the result of a simulation usim(n) with a default policy

from a rollout policy network
I a heuristic value h(n) from a value network

I combined via a mixing parameter λ ∈ [0, 1]
by setting the utility of the iteration to

λ · usim(n) + (1− λ) · h(n)

I mixing parameter in final version is λ = 0.5, which indicates
that both parts are important for playing strength
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MCTS in AlphaGo: Other

expansion phase:

I ignores restriction that unvisited successors must be created

finally selected move:

I move to child of root that has been visited most often
rather than the one with highest utility estimate
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45.3 Neural Networks
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Neural Networks in AlphaGo

AlphaGo computes four neural networks:

I supervised learning (SL) policy network
 for prior probabilities

I rollout policy network
 for default policy in simulation phase

I reinforcement learning (RL) policy network
(intermediate step only)

I value network
 for heuristic in simulation phase
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Neural Networks

I used to approximate an unknown function
I layered graph of three types of nodes:

I input nodes
I hidden nodes
I output nodes

I iteratively learns function by adapting weights
of connections between nodes
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Neural Networks: Example

input layer 1st hidden layer 2nd hidden layer output layer
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SL Policy Network: Architecture

input nodes:

I the current position

I (limited) move history

I additional features (e.g., related to ladders)

hidden layer:
I several convolutional layers:

I combine local information
 only partial connections between layers

I weights are shared between connections of the same type

I final linear softmax layer
I converts weights to probabilities

output nodes: a probability distribution over all legal moves
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SL Policy Network: Convolutional Layers

input layer 1st hidden layer
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SL Policy Network

I uses 30 million positions and selected moves
of strong human players from KGS Go Server

I supervised learning: network learns to match given inputs to
given outputs (i.e., the given position to the selected move)

I most “human-like” part of AlphaGo:
aims to replicate human choices, not to win

I prediction accuracy: 57%

I 3 ms per query

well-informed results with variance  good for priors
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Rollout Policy Network: Architecture

input nodes:

I only small set of features from small window around own
and opponent’s previous move

I does not look at the entire 19× 19 board

hidden layer: a single linear softmax layer

output nodes: a probability distribution over all legal moves
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Rollout Policy Network

I uses supervised learning with the same data
as the SL policy network

I lower prediction accuracy: 24.2%

I but allows fast queries: just 2 µs
(more than 1000 times faster than SL policy network)

reasonably informed yet cheap to compute
 well-suited as default policy
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Value Network: RL Policy Network

first create sequence of RL policy networks
with reinforcement learning

I initialize first RL policy network to SL policy network

I in each iteration, pick a former RL policy network uniformly
randomly  prevents overfitting to the current policy

I play with the current network against the picked one:
I compute the probability distribution over all legal moves

for the current position
I sample a move according to the probabilities
I play that move
I repeat until a final position is reached

I create new RL policy network by updating weights
in the direction that maximizes expected outcome
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Value Network: Architecture

then transform RL policy network to value network

I input nodes: same as in SL and RL policy network

I hidden layers: similar to RL policy network

I output node: utility estimate that approximates u∗

 the value network computes a heuristic
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Value Network

I using position-outcome pairs from KGS Server
leads to overfitting

I using too many positions from same game introduces bias

I create a new dataset with 30 million self-play games
of standalone RL policy network against itself

I each game only introduces a single position-outcome pair
(chosen randomly) into the new dataset  only minimal
overfitting

I slightly worse accuracy than using RL Policy Network
as default policy

I but 15000 times faster

well informed and fast  good heuristic
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45.4 Summary
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Summary: This Chapter

I AlphaGo combines Monte-Carlo Tree Search
with neural networks

I uses priors to guide selection strategy

I priors are learned from human players

I learns a reasonably informed yet cheap to compute
default policy

I simulation steps are augmented with utility estimates,
which are learned from humans and intensive self-play

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 22, 2019 25 / 26

45. AlphaGo and Outlook Summary

Summary: Board Games

I board games have traditionally been important in AI research

I in most board games, computers are able to beat
human experts

I optimal strategy can be computed with minimax

I alpha-beta pruning often speeds up minimax significantly

I introduction of Monte-Carlo Tree Search
led to tremendous progress in several games

I combination with neural networks allowed to beat
top human players in Go
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