
Foundations of Artificial Intelligence
43. Monte-Carlo Tree Search: Introduction

Malte Helmert

University of Basel

May 20, 2019

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Board Games: Overview

chapter overview:

40. Introduction and State of the Art

41. Minimax Search and Evaluation Functions

42. Alpha-Beta Search

43. Monte-Carlo Tree Search: Introduction

44. Monte-Carlo Tree Search: Advanced Topics

45. AlphaGo and Outlook

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Introduction

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search: Brief History

Starting in the 1930s: first researchers experiment
with Monte-Carlo methods

1998: Ginsberg’s GIB player achieves strong performance
playing Bridge

 this chapter

2002: Auer et al. present UCB1 action selection
for multi-armed bandits

 Chapter 44

2006: Coulom coins the term Monte-Carlo Tree Search
(MCTS)

 this chapter

2006: Kocsis and Szepesvári combine UCB1 and MCTS
into the most famous MCTS variant, UCT

 Chapter 44

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search: Brief History

Starting in the 1930s: first researchers experiment
with Monte-Carlo methods

1998: Ginsberg’s GIB player achieves strong performance
playing Bridge this chapter

2002: Auer et al. present UCB1 action selection
for multi-armed bandits Chapter 44

2006: Coulom coins the term Monte-Carlo Tree Search
(MCTS) this chapter

2006: Kocsis and Szepesvári combine UCB1 and MCTS
into the most famous MCTS variant, UCT Chapter 44

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search: Applications

Examples for successful applications of MCTS in games:

board games (e.g., Go Chapter 45)

card games (e.g., Poker)

AI for computer games
(e.g., for Real-Time Strategy Games or Civilization)

Story Generation
(e.g., for dynamic dialogue generation in computer games)

General Game Playing

Also many applications in other areas, e.g.,

MDPs (planning with stochastic effects) or

POMDPs (MDPs with partial observability)

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Methods

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Methods: Idea

subsume a broad family of algorithms

decisions are based on random samples

results of samples are aggregated by computing the average

apart from these points, algorithms differ significantly

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Aside: Hindsight Optimization vs. the Exam

As a motivating example for Monte-Carlo methods,
we now briefly look at hindsight optimization.

Hindsight optimization is interesting for settings with
randomness and partial observability, which we do not
otherwise consider in this lecture.

To keep the discussion short, we do not provide formal details
for how to model randomness and partial observability.

Therefore, the slides on hindsight optimization
are not relevant for the exam.

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Methods: Example

Bridge Player GIB, based on Hindsight Optimization (HOP)

perform samples as long as resources (deliberation time,
memory) allow:

sample hands for all players that are consistent
with current knowledge about the game state

for each legal move, compute if fully observable game
that starts with executing that move is won or lost

compute win percentage for each move over all samples

play the card with the highest win percentage

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Hindsight Optimization: Example

South to play, three tricks to win, trump suit ♣

0% (0/1)

100% (1/1)

0% (0/1)

50% (1/2)

100% (2/2)

0% (0/2)

67% (2/3)

100% (3/3)

33% (1/3)

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Hindsight Optimization: Example

South to play, three tricks to win, trump suit ♣

0% (0/1)

100% (1/1)

0% (0/1)

50% (1/2)

100% (2/2)

0% (0/2)

67% (2/3)

100% (3/3)

33% (1/3)

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Hindsight Optimization: Example

South to play, three tricks to win, trump suit ♣

0% (0/1)

100% (1/1)

0% (0/1)

50% (1/2)

100% (2/2)

0% (0/2)

67% (2/3)

100% (3/3)

33% (1/3)

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Hindsight Optimization: Example

South to play, three tricks to win, trump suit ♣

0% (0/1)

100% (1/1)

0% (0/1)

50% (1/2)

100% (2/2)

0% (0/2)

67% (2/3)

100% (3/3)

33% (1/3)

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Hindsight Optimization: Restrictions

HOP well-suited for partially observable games like
most card games (Bridge, Skat, Klondike Solitaire)

must be possible to solve or approximate sampled game
efficiently

often not optimal even if provided with infinite resources

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Hindsight Optimization: Suboptimality

gamble safe

hit

m
iss

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Hindsight Optimization: Suboptimality

gamble safe

hit

m
iss

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search: Idea

Monte-Carlo Tree Search (MCTS) ideas:

perform iterations as long as resources
(deliberation time, memory) allow:

build a partial game tree, where nodes n are annotated with

utility estimate û(n)
visit counter N(n)

initially, the tree contains only the root node

each iteration adds one node to the tree

After constructing the tree, play the move that leads to the child of
the root with highest utility estimate (as in minimax/alpha-beta).

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search: Iterations

Each iteration consists of four phases:

selection: traverse the tree by applying tree policy

Stop when reaching terminal node (in this case, set nchild to
that node and p? to its position and skip next two phases). . .
. . . or when reaching a node nparent for which not all successors
are part of the tree.

expansion: add a missing successor nchild of nparent to the tree

simulation: apply default policy from nchild
until a terminal position p? is reached

backpropagation: for all nodes n on path from root to nchild:

increase N(n) by 1
update current average û(n) based on u(p?)

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree

11
13

12 5 14 4 6 1 7 3

4
1

8
1

18
2

18
2

2
1

5
1

6
1

12 1 16 1

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree

11
13

12 5 14 4 6 1 7 3

4
1

8
1

18
2

18
2

2
1

5
1

6
1

12 1 16 1

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree

11
13

12 5 14 4 6 1 7 3

4
1

8
1

18
2

18
2

2
1

5
1

6
1

12 1 16 1

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree

11
13

12 5 14 4 6 1 7 3

4
1

8
1

18
2

18
2

2
1

5
1

6
1

12 1 16 1

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

Expansion: create a node for first position beyond the tree

11
13

12 5 14 4 6 1 7 3

4
1

8
1

18
2

18
2

2
1

5
1

6
1

12 1 ? 0 16 1

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

Simulation: apply default policy until terminal position is reached

11
13

12 5 14 4 6 1 7 3

4
1

8
1

18
2

18
2

2
1

5
1

6
1

12 1 ? 0 16 1

39

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes

11
13

12 5 14 4 6 1 7 3

4
1

8
1

18
2

18
2

2
1

5
1

6
1

12 1 39 1 16 1

39

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes

11
13

12 5 14 4 6 1 7 3

4
1

8
1

18
2

25
3

2
1

5
1

6
1

12 1 39 1 16 1

39

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes

11
13

12 5 19 5 6 1 7 3

4
1

8
1

18
2

25
3

2
1

5
1

6
1

12 1 39 1 16 1

39

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes

13
14

12 5 19 5 6 1 7 3

4
1

8
1

18
2

25
3

2
1

5
1

6
1

12 1 39 1 16 1

39

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search: Pseudo-Code

Monte-Carlo Tree Search

n0 := create root node():
while time allows():

visit node(n0)
nbest := arg maxn∈succ(n0) û(n)
return nbest.move

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Monte-Carlo Tree Search: Pseudo-Code

function visit node(n)

if is terminal(n.position):
utility := u(n.position)

else:
p := n.get unvisited successor()
if p is none:

n′ := apply tree policy(n)
utility := visit node(n′)

else:
p? := apply default policy until end(p)
utility := u(p?)
n.add child node(p, utility)

update visit count and estimate(n, utility)
return utility

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Summary

Introduction Monte-Carlo Methods Monte-Carlo Tree Search Summary

Summary

Monte-Carlo methods compute averages
over a number of random samples.

Simple Monte-Carlo methods like Hindsight Optimization
perform well in some games, but are suboptimal
even with unbounded resources.

Monte-Carlo Tree Search (MCTS) algorithms iteratively build
a search tree, adding one node in each iteration.

MCTS is parameterized by a tree policy and a default policy.

	Introduction
	

	Monte-Carlo Methods
	

	Monte-Carlo Tree Search
	

	Summary
	

