Foundations of Artificial Intelligence
42. Board Games: Alpha-Beta Search

Malte Helmert

University of Basel

May 20, 2019

M. Helmert (University of Basel) Foundations of Artificial Intelligence

May 20, 2019

1

/

/ 16

Foundations of Artificial Intelligence
May 20, 2019 — 42. Board Games: Alpha-Beta Search

42.1 Alpha-Beta Search

42.2 Move Ordering

42.3 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence

May 20, 2019

2/

16

Board Games: Overview

chapter overview:

» 40. Introduction and State of the Art
41. Minimax Search and Evaluation Functions
42. Alpha-Beta Search
43. Monte-Carlo Tree Search: Introduction
44. Monte-Carlo Tree Search: Advanced Topics
45. AlphaGo and Outlook

vvyYyvyy

M. Helmert (University of Basel) Foundations of Artificial Intelligence

May 20, 2019

3/

16

42. Board Games: Alpha-Beta Search

42.1 Alpha-Beta Search

M. Helmert (University of Basel) Foundations of Artificial Intelligence

Alpha-Beta Search

May 20, 2019

4/

42. Board Games: Alpha-Beta Search Alpha-Beta Search

Alpha-Beta Search

Can we save search effort?
We do not need to consider all the nodes!

May 20, 2019 5/ 16

Foundations of Artificial Intelligence

M. Helmert (University of Basel)

42. Board Games: Alpha-Beta Search

Alpha-Beta Search: Generally

Player

Opponent

Player

Opponent

If m > n, then node with utility n will never be reached
when playing perfectly!

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 20, 2019

6/

Alpha-Beta Search

16

42. Board Games: Alpha-Beta Search Alpha-Beta Search

Alpha-Beta Search: Idea

idea: Use two values a and 8 during minimax depth-first search,
such that the following holds for every recursive call:

> If the utility value in the current subtree is < «,
then the subtree is not interesting
because MAX will never enter it when playing perfectly.

> If the utility value in the current subtree is > j3,

then the subtree is not interesting
because MIN will never enter it when playing perfectly.

If « > (3 in the subtree, then the subtree is not interesting
and does not have to be searched further (o~ pruning).

Starting with & = —o0 and 8 = +o0, alpha-beta search
produces the identical result as minimax, with lower seach effort.

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 20, 2019 7/ 16

42. Board Games: Alpha-Beta Search

Alpha-Beta Search: Pseudo Code

P algorithm skeleton the same as minimax

> function signature extended by two variables o and 3

function alpha-beta-main(p)
(v, move) := alpha-beta(p, —00, +00)
return move

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 20, 2019

8 /

Alpha-Beta Search

42. Board Games: Alpha-Beta Search Alpha-Beta Search

Alpha-Beta Search: Pseudo-Code

function alpha-beta(p, «,)
if p is terminal position:
return (u(p), none)
initialize v and best_move [as in minimax]
for each (move, p’) € succ(p):
(v, best_move') := alpha-beta(p’, a,)
update v and best_move [as in minimax]
if player(p) = MAX:
if v>p:
return (v, none)
a = max{a, v}
if player(p) = MIN:

if v<a:
return (v, none)
B :=min{3, v}

return (v, best_move)

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 20, 2019 9 /16

42. Board Games: Alpha-Beta Search Alpha-Beta Search

Alpha-Beta Search: Example

Cf. screen slides for detailed steps.

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 20, 2019 10 / 16

42. Board Games: Alpha-Beta Search Move Ordering

42.2 Move Ordering

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 20, 2019 11 /16

42. Board Games: Alpha-Beta Search Move Ordering

Alpha-Beta Search: Example

If the last successor had been first, the rest of the subtree would
have been pruned.

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 20, 2019 12 /16

42. Board Games: Alpha-Beta Search

Move Ordering

idea: consider first the successors that are likely to be best.

» Domain-specific ordering function
e.g. chess: captures < threats < forward moves < backward moves
» Dynamic move-ordering
> try first moves that have been good in the past

P> e.g. in iterative deepening search:
best moves from previous iteration

Move Ordering

42. Board Games: Alpha-Beta Search

How Much Do We Gain with Alpha-Beta Search?

assumption: uniform game tree, depth d, branching factor b > 2;
MAX and MIN positions alternating

» perfect move ordering

> best move at every position is considered first

(this cannot be done in practice — Why?)

» maximizing move for MAX, minimizing move for MIN

> effort reduced from O(b9) (minimax) to O(b9/?)

» doubles the search depth that can be achieved in same time
» random move ordering

> effort still reduced to O(b3?/#) (for moderate b)

In practice, it is often possible to get close to the optimum.

M. Helmert (University of Basel) Foundations of Artificial Intelligence

May 20, 2019 14 /

Move Ordering

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 20, 2019 13 /16
42. Board Games: Alpha-Beta Search Summary
M. Helmert (University of Basel) Foundations of Artificial Intelligence May 20, 2019 15 / 16

42. Board Games: Alpha-Beta Search

Summary

alpha-beta search

> stores which utility both players can force
somewhere else in the game tree

> exploits this information to avoid unnecessary computations

v

can have significantly lower search effort than minimax

P best case: search twice as deep in the same time

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 20, 2019 16

Summary

/ 16

	Alpha-Beta Search
	

	Move Ordering
	

	Summary
	

