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Terminology for Two-Player Games

I Players are traditionally called MAX and MIN.

I Our objective is to compute moves for MAX
(MIN is the opponent).

I MAX tries to maximize its utility (given by
the utility function u) in the reached terminal position.

I MIN tries to minimize u
(which in turn maximizes MINs utility).
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Example: Tic-Tac-Toe

I game tree with player’s turn (MAX/MIN) marked on the left

I last row: terminal positions with utility

I size of game tree?
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Minimax: Computation

1. depth-first search through game tree

2. Apply utility function in terminal position.

3. Compute utility value of inner nodes
from below to above through the tree:
I MIN’s turn: utility is minimum of utility values of children
I MAX’s turn: utility is maximum of utility values of children

4. move selection for MAX in root:
choose a move that maximizes the computed utility value
(minimax decision)
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Minimax: Example
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Minimax: Discussion

I Minimax is the simplest (decent) search algorithm for games

I Yields optimal strategy∗ (in the game theoretic sense, i.e.,
under the assumption that the opponent plays perfectly),
but is too time consuming for complex games.

I We obtain at least the utility value computed for the root,
no matter how the opponent plays.

I In case the opponent plays perfectly,
we obtain exactly that value.

(*) for games where no cycles occur; otherwise things get more
complicated (because the tree will have infinite size in this case).
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Minimax: Pseudo-Code

function minimax(p)

if p is terminal position:
return 〈u(p),none〉

best move := none
if player(p) = MAX:

v := −∞
else:

v :=∞
for each 〈move, p′〉 ∈ succ(p):

〈v ′, best move′〉 := minimax(p′)
if (player(p) = MAX and v ′ > v) or

if

(player(p) = MIN and v ′ < v):
v := v ′

best move := move
return 〈v , best move〉
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Minimax

What if the size of the game tree is too big for minimax?
 approximation by evaluation function
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Evaluation Functions

I problem: game tree too big
I idea: search only up to certain depth
I depth reached: estimate the utility according to

heuristic criteria (as if terminal position had been reached)

Example (evaluation function in chess)
I material: pawn 1, knight 3, bishop 3, rook 5, queen 9

positive sign for pieces of MAX, negative sign for MIN

I pawn structure, mobility, . . .

rule of thumb: advantage of 3 points  clear winning position

Accurate evaluation functions are crucial!

I High values should relate to high “winning chances”
in order to make the overall approach work.

I At the same time, the evaluation should be
efficiently computable in order to be able to search deeply.
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Linear Evaluation Functions

Usually weighted linear functions are applied:

w1f1 + w2f2 + · · ·+ wnfn

where wi are weights, and fi are features.

I assumes that feature contributions are mutually independent
(usually wrong but acceptable assumption)

I allows for efficient incremental computation
if most features are unaffected by most moves

I Weights can be learned automatically.

I Features are (usually) provided by human experts.
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How Deep Shall We Search?

I objective: search as deeply as possible within a given time

I problem: search time difficult to predict
I solution: iterative deepening

I sequence of searches of increasing depth
I time expires: return result of previously finished search

I refinement: search depth not uniform, but deeper in
“turbulent” positions (i.e., with strong fluctuations
of the evaluation function)  quiescence search
I example chess: deepen the search if exchange of pieces

has started, but not yet finished
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Summary

I Minimax is a tree search algorithm that plays perfectly
(in the game-theoretic sense), but its complexity is O(bd)
(branching factor b, search depth d).

I In practice, the search depth must be limited
 apply evaluation functions
(usually linear combinations of features).
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