
Foundations of Artificial Intelligence
41. Board Games: Minimax Search and Evaluation Functions

Malte Helmert

University of Basel

May 15, 2019

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 15, 2019 1 / 16

Foundations of Artificial Intelligence
May 15, 2019 — 41. Board Games: Minimax Search and Evaluation Functions

41.1 Minimax Search

41.2 Evaluation Functions

41.3 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 15, 2019 2 / 16

41. Board Games: Minimax Search and Evaluation Functions Minimax Search

41.1 Minimax Search

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 15, 2019 3 / 16

41. Board Games: Minimax Search and Evaluation Functions Minimax Search

Terminology for Two-Player Games

I Players are traditionally called MAX and MIN.

I Our objective is to compute moves for MAX
(MIN is the opponent).

I MAX tries to maximize its utility (given by
the utility function u) in the reached terminal position.

I MIN tries to minimize u
(which in turn maximizes MINs utility).

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 15, 2019 4 / 16

41. Board Games: Minimax Search and Evaluation Functions Minimax Search

Example: Tic-Tac-Toe

I game tree with player’s turn (MAX/MIN) marked on the left

I last row: terminal positions with utility

I size of game tree?

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 15, 2019 5 / 16

41. Board Games: Minimax Search and Evaluation Functions Minimax Search

Minimax: Computation

1. depth-first search through game tree

2. Apply utility function in terminal position.

3. Compute utility value of inner nodes
from below to above through the tree:
I MIN’s turn: utility is minimum of utility values of children
I MAX’s turn: utility is maximum of utility values of children

4. move selection for MAX in root:
choose a move that maximizes the computed utility value
(minimax decision)

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 15, 2019 6 / 16

41. Board Games: Minimax Search and Evaluation Functions Minimax Search

Minimax: Example

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 4 6 14 5 2

MAX

MIN 3 2 2

3

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 15, 2019 7 / 16

41. Board Games: Minimax Search and Evaluation Functions Minimax Search

Minimax: Discussion

I Minimax is the simplest (decent) search algorithm for games

I Yields optimal strategy∗ (in the game theoretic sense, i.e.,
under the assumption that the opponent plays perfectly),
but is too time consuming for complex games.

I We obtain at least the utility value computed for the root,
no matter how the opponent plays.

I In case the opponent plays perfectly,
we obtain exactly that value.

(*) for games where no cycles occur; otherwise things get more
complicated (because the tree will have infinite size in this case).

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 15, 2019 8 / 16

41. Board Games: Minimax Search and Evaluation Functions Minimax Search

Minimax: Pseudo-Code

function minimax(p)

if p is terminal position:
return 〈u(p),none〉

best move := none
if player(p) = MAX:

v := −∞
else:

v :=∞
for each 〈move, p′〉 ∈ succ(p):

〈v ′, best move′〉 := minimax(p′)
if (player(p) = MAX and v ′ > v) or

if

(player(p) = MIN and v ′ < v):
v := v ′

best move := move
return 〈v , best move〉

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 15, 2019 9 / 16

41. Board Games: Minimax Search and Evaluation Functions Minimax Search

Minimax

What if the size of the game tree is too big for minimax?
 approximation by evaluation function

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 15, 2019 10 / 16

41. Board Games: Minimax Search and Evaluation Functions Evaluation Functions

41.2 Evaluation Functions

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 15, 2019 11 / 16

41. Board Games: Minimax Search and Evaluation Functions Evaluation Functions

Evaluation Functions

I problem: game tree too big
I idea: search only up to certain depth
I depth reached: estimate the utility according to

heuristic criteria (as if terminal position had been reached)

Example (evaluation function in chess)
I material: pawn 1, knight 3, bishop 3, rook 5, queen 9

positive sign for pieces of MAX, negative sign for MIN

I pawn structure, mobility, . . .

rule of thumb: advantage of 3 points clear winning position

Accurate evaluation functions are crucial!

I High values should relate to high “winning chances”
in order to make the overall approach work.

I At the same time, the evaluation should be
efficiently computable in order to be able to search deeply.

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 15, 2019 12 / 16

41. Board Games: Minimax Search and Evaluation Functions Evaluation Functions

Linear Evaluation Functions

Usually weighted linear functions are applied:

w1f1 + w2f2 + · · ·+ wnfn

where wi are weights, and fi are features.

I assumes that feature contributions are mutually independent
(usually wrong but acceptable assumption)

I allows for efficient incremental computation
if most features are unaffected by most moves

I Weights can be learned automatically.

I Features are (usually) provided by human experts.

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 15, 2019 13 / 16

41. Board Games: Minimax Search and Evaluation Functions Evaluation Functions

How Deep Shall We Search?

I objective: search as deeply as possible within a given time

I problem: search time difficult to predict
I solution: iterative deepening

I sequence of searches of increasing depth
I time expires: return result of previously finished search

I refinement: search depth not uniform, but deeper in
“turbulent” positions (i.e., with strong fluctuations
of the evaluation function) quiescence search
I example chess: deepen the search if exchange of pieces

has started, but not yet finished

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 15, 2019 14 / 16

41. Board Games: Minimax Search and Evaluation Functions Summary

41.3 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 15, 2019 15 / 16

41. Board Games: Minimax Search and Evaluation Functions Summary

Summary

I Minimax is a tree search algorithm that plays perfectly
(in the game-theoretic sense), but its complexity is O(bd)
(branching factor b, search depth d).

I In practice, the search depth must be limited
 apply evaluation functions
(usually linear combinations of features).

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 15, 2019 16 / 16

	Minimax Search
	

	Evaluation Functions
	

	Summary
	

